Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture).

The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.

[1]  Laurent Cognet,et al.  Super-resolution microscopy approaches for live cell imaging. , 2014, Biophysical journal.

[2]  Adam S. Backer,et al.  Optimal point spread function design for 3D imaging. , 2014, Physical review letters.

[3]  W. E. Moerner,et al.  Small-Molecule Labeling of Live Cell Surfaces for Three-Dimensional Super-Resolution Microscopy , 2014, Journal of the American Chemical Society.

[4]  Wm. Randall Babbitt,et al.  From spectral holeburning memory to spatial-spectral microwave signal processing , 2014 .

[5]  Akihiro Kusumi,et al.  Tracking single molecules at work in living cells. , 2014, Nature chemical biology.

[6]  W. Moerner,et al.  Single-molecule spectroscopy of photosynthetic proteins in solution: exploration of structure–function relationships , 2014 .

[7]  W E Moerner,et al.  A bisected pupil for studying single-molecule orientational dynamics and its application to three-dimensional super-resolution microscopy. , 2014, Applied physics letters.

[8]  Adam S. Backer,et al.  Extending Single-Molecule Microscopy Using Optical Fourier Processing , 2014, The journal of physical chemistry. B.

[9]  Matthew D Lew,et al.  The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[10]  X. Xie Enzyme Kinetics, Past and Present , 2013, Science.

[11]  W E Moerner,et al.  Super-resolution fluorescence imaging with single molecules. , 2013, Current opinion in structural biology.

[12]  Michael W. Davidson,et al.  Video-rate nanoscopy enabled by sCMOS camera-specific single-molecule localization algorithms , 2013, Nature Methods.

[13]  W E Moerner,et al.  Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in three dimensions. , 2013, Nano letters.

[14]  X. Zhuang,et al.  Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons , 2013, Science.

[15]  W. E. Moerner,et al.  Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging , 2013, Nature Reviews Microbiology.

[16]  W E Moerner,et al.  Enzymatic activation of nitro-aryl fluorogens in live bacterial cells for enzymatic turnover-activated localization microscopy† , 2013, Chemical science.

[17]  Tobias M. P. Hartwich,et al.  Video-rate nanoscopy using sCMOS camera- specific single-molecule localization algorithms , 2013 .

[18]  M. Nollmann,et al.  Single-molecule super-resolution imaging in bacteria. , 2012, Current opinion in microbiology.

[19]  Carla Coltharp,et al.  Superresolution microscopy for microbiology , 2012, Cellular microbiology.

[20]  Lucien E. Weiss,et al.  Cellular Inclusion Bodies of Mutant Huntingtin Exon 1 Obscure Small Fibrillar Aggregate Species , 2012, Scientific Reports.

[21]  Quan Wang,et al.  Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap. , 2012, Accounts of chemical research.

[22]  G. Jensen,et al.  The Helical MreB Cytoskeleton in Escherichia coli MC1000/pLE7 Is an Artifact of the N-Terminal Yellow Fluorescent Protein Tag , 2012, Journal of bacteriology.

[23]  Shigeki Iwanaga,et al.  Fluorescent saxitoxins for live cell imaging of single voltage-gated sodium ion channels beyond the optical diffraction limit. , 2012, Chemistry & biology.

[24]  W. E. Moerner,et al.  Microscopy beyond the diffraction limit using actively controlled single molecules , 2012, Journal of microscopy.

[25]  M. Treviño,et al.  Noradrenergic ‘Tone’ Determines Dichotomous Control of Cortical Spike-Timing-Dependent Plasticity , 2012, Scientific Reports.

[26]  Matthew D. Lew,et al.  Extending microscopic resolution with single-molecule imaging and active control. , 2012, Annual review of biophysics.

[27]  William E. Moerner,et al.  Persistent Spectral Hole-Burning: Science and Applications , 2012 .

[28]  Matthew D. Lew,et al.  Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus , 2011, Proceedings of the National Academy of Sciences.

[29]  W E Moerner,et al.  Sub-diffraction imaging of huntingtin protein aggregates by fluorescence blink-microscopy and atomic force microscopy. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  N. Wingreen,et al.  The bacterial actin MreB rotates, and rotation depends on cell-wall assembly , 2011, Proceedings of the National Academy of Sciences.

[31]  Michael A Thompson,et al.  Super-resolution imaging of the nucleoid-associated protein HU in Caulobacter crescentus. , 2011, Biophysical journal.

[32]  P. Verveer,et al.  FRET in cell biology: still shining in the age of super-resolution? , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  Matthew D Lew,et al.  Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects. , 2011, Optics letters.

[34]  X. Zhuang,et al.  Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells , 2010, Cell.

[35]  Shigeki Iwanaga,et al.  Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. , 2010, Journal of the American Chemical Society.

[36]  Christian Eggeling,et al.  Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. , 2010, Biophysical journal.

[37]  Matthew D. Lew,et al.  Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane. , 2010, Applied physics letters.

[38]  L. Shapiro,et al.  A spindle-like apparatus guides bacterial chromosome segregation , 2010, Nature Cell Biology.

[39]  H. Flyvbjerg,et al.  Optimized localization-analysis for single-molecule tracking and super-resolution microscopy , 2010, Nature Methods.

[40]  W. Moerner,et al.  Single-molecule and superresolution imaging in live bacteria cells. , 2010, Cold Spring Harbor perspectives in biology.

[41]  Wolfram Summerer,et al.  Resolving single-molecule assembled patterns with superresolution blink-microscopy. , 2010, Nano letters.

[42]  Samuel J. Lord,et al.  Molecules and methods for super-resolution imaging. , 2010, Methods in enzymology.

[43]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[44]  S. Ram,et al.  High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells. , 2008, Biophysical journal.

[45]  Michael A Thompson,et al.  Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP , 2008, Nature Methods.

[46]  M. Hausmann,et al.  SPDM: light microscopy with single-molecule resolution at the nanoscale , 2008 .

[47]  Philip Tinnefeld,et al.  Fluoreszenzmikroskopie unterhalb der optischen Auflösungsgrenze mit konventionellen Fluoreszenzsonden , 2008 .

[48]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[49]  Rahul Roy,et al.  A practical guide to single-molecule FRET , 2008, Nature Methods.

[50]  S. Hess,et al.  Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples , 2008, Nature Methods.

[51]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[52]  Samuel J. Lord,et al.  Nanophotonics and Single Molecules , 2008 .

[53]  Lucy Shapiro,et al.  Cell cycle regulation in Caulobacter: location, location, location , 2007, Journal of Cell Science.

[54]  W E Moerner,et al.  New directions in single-molecule imaging and analysis , 2007, Proceedings of the National Academy of Sciences.

[55]  S. Nishimura,et al.  Single-molecule tracking. , 2007, Methods in molecular biology.

[56]  Petra Schwille,et al.  Fluorescence correlation spectroscopy and its potential for intracellular applications , 2007, Cell Biochemistry and Biophysics.

[57]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[58]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[59]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[60]  D. Brockwell,et al.  Handbook of Single Molecule Fluorescence Spectroscopy , 2006 .

[61]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[62]  Zemer Gitai,et al.  Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Christopher A Werley,et al.  Single-molecule nanoprobes explore defects in spin-grown crystals. , 2006, The journal of physical chemistry. B.

[64]  Feng Gao,et al.  Controlled bimolecular collisions allow sub-diffraction limited microscopy of lipid vesicles. , 2006, Physical chemistry chemical physics : PCCP.

[65]  Shimon Weiss,et al.  Using photon statistics to boost microscopy resolution. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[66]  S. Nishimura,et al.  Cholesterol depletion induces solid-like regions in the plasma membrane. , 2006, Biophysical journal.

[67]  Henrik Flyvbjerg,et al.  A non-Gaussian distribution quantifies distances measured with fluorescence localization techniques. , 2006, Biophysical journal.

[68]  R. Heintzmann,et al.  Superresolution by localization of quantum dots using blinking statistics. , 2005, Optics express.

[69]  J. Spudich,et al.  Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  W E Moerner,et al.  Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane. , 2005, Biophysical journal.

[71]  A. Miyawaki,et al.  Regulated Fast Nucleocytoplasmic Shuttling Observed by Reversible Protein Highlighting , 2004, Science.

[72]  J. Wiedenmann,et al.  EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  L. Mets,et al.  Nanometer-localized multiple single-molecule fluorescence microscopy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[74]  T. Ha,et al.  Single-molecule high-resolution imaging with photobleaching. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[76]  Harley H. McAdams,et al.  Generating and Exploiting Polarity in Bacteria , 2002, Science.

[77]  W E Moerner,et al.  Translational diffusion of individual class II MHC membrane proteins in cells. , 2002, Biophysical journal.

[78]  A. Miyawaki,et al.  An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[79]  George H. Patterson,et al.  A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells , 2002, Science.

[80]  Rainer Heintzmann,et al.  High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. , 2002, Analytical chemistry.

[81]  Richard A. Keller,et al.  Single molecule detection in solution : methods and applications , 2002 .

[82]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[83]  Richard A. Keller,et al.  Single Molecule Detection in Solution , 2002 .

[84]  Watt W Webb,et al.  Biological and chemical applications of fluorescence correlation spectroscopy: a review. , 2002, Biochemistry.

[85]  M. Hallek,et al.  Real-Time Single-Molecule Imaging of the Infection Pathway of an Adeno-Associated Virus , 2001, Science.

[86]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[87]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals and Polymers , 1999 .

[88]  T. Latychevskaia,et al.  Absorption spectroscopy on single molecules in solids , 1999 .

[89]  Jürgen Köhler,et al.  Far-field fluorescence microscopy beyond the diffraction limit , 1999 .

[90]  W. Moerner,et al.  Illuminating single molecules in condensed matter. , 1999, Science.

[91]  S. Weiss Fluorescence spectroscopy of single biomolecules. , 1999, Science.

[92]  W. Moerner,et al.  Single-Molecule Spectroscopy and Quantum Optics in Solids , 1998 .

[93]  David J. Norris,et al.  SIMULTANEOUS IMAGING OF INDIVIDUAL MOLECULES ALIGNED BOTH PARALLEL AND PERPENDICULAR TO THE OPTIC AXIS , 1998 .

[94]  Jürgen Köhler,et al.  3-Dimensional super-resolution by spectrally selective imaging , 1998 .

[95]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[96]  T. Plakhotnik,et al.  Single-molecule spectroscopy. , 2003, Annual review of physical chemistry.

[97]  C. Tietz,et al.  Absorption, excitation, and emission spectroscopy of terrylene in p-terphenyl: Bulk measurements and single molecule studies , 1997 .

[98]  J. Skinner,et al.  THEORY OF SINGLE-MOLECULE OPTICAL LINE-SHAPE DISTRIBUTIONS IN LOW-TEMPERATURE GLASSES , 1997 .

[99]  R. Tsien,et al.  On/off blinking and switching behaviour of single molecules of green fluorescent protein , 1997, Nature.

[100]  W. Moerner,et al.  HIGH-RESOLUTION OPTICAL SPECTROSCOPY OF SINGLE MOLECULES IN SOLIDS , 1996 .

[101]  W. Moerner,et al.  Three-Dimensional Imaging of Single Molecules Solvated in Pores of Poly(acrylamide) Gels , 1996, Science.

[102]  F. Güttler,et al.  Single molecule polarization spectroscopy: pentacene in p-terphenyl , 1996 .

[103]  S. Boxer,et al.  Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[104]  W. Moerner,et al.  Structure and Dynamics in Solids As Probed by Optical Spectroscopy , 1996 .

[105]  D. F. Ogletree,et al.  Probing the interaction between single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[106]  Louis E. Brus,et al.  Imaging and Time-Resolved Spectroscopy of Single Molecules at an Interface , 1996, Science.

[107]  H Schindler,et al.  Imaging of single molecule diffusion. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[108]  M. Orrit,et al.  II Optical Spectroscopy of Single Molecules in Solids , 1996 .

[109]  Kiwamu Saito,et al.  Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution , 1995, Nature.

[110]  E. Betzig,et al.  Proposed method for molecular optical imaging. , 1995, Optics letters.

[111]  J. Skinner,et al.  Spectral diffusion of individual pentacene molecules in P‐terphenyl crystal: Stochastic theoretical model and analysis of experimental data , 1995 .

[112]  Wild,et al.  Near-field optical spectroscopy of individual molecules in solids. , 1994, Physical review letters.

[113]  R N Zare,et al.  Probing individual molecules with confocal fluorescence microscopy. , 1994, Science.

[114]  A. H. Klahn,et al.  References and Notes , 2022 .

[115]  Urs P. Wild,et al.  Optical Probing of Single Molecules of Terrylene in a Shpol'kii Matrix: A Two-State Single-Molecule Switch , 1994 .

[116]  W. Moerner,et al.  Examining Nanoenvironments in Solids on the Scale of a Single, Isolated Impurity Molecule , 1994, Science.

[117]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[118]  W. Moerner,et al.  Vibronic Spectroscopy of Individual Molecules in Solids , 1994 .

[119]  Alois Renn,et al.  Fluorescence Microscopy of Single Molecules , 1994 .

[120]  Ambrose,et al.  Single molecule detection and photochemistry on a surface using near-field optical excitation. , 1994, Physical review letters.

[121]  W. Moerner,et al.  Single-Molecule Spectroscopy in Shpolskii Matrices , 1994 .

[122]  Skinner,et al.  Spectral diffusion of single molecule fluorescence: A probe of low-frequency localized excitations in disordered crystals. , 1993, Physical review letters.

[123]  Robert J. Chichester,et al.  Single Molecules Observed by Near-Field Scanning Optical Microscopy , 1993, Science.

[124]  W. Moerner,et al.  Vibrational analysis of the dispersed fluorescence from single molecules of terrylene in polyethylene , 1993 .

[125]  M. Orrit,et al.  High-resolution spectroscopy of organic molecules in solids: from fluorescence line narrowing and hole burning to single molecule spectroscopy , 1993 .

[126]  W. Moerner,et al.  Optical studies of single terrylene molecules in polyethylene , 1993 .

[127]  Brown,et al.  Probing individual two-level systems in a polymer by correlation of single molecule fluorescence. , 1993, Physical review letters.

[128]  Jürgen Köhler,et al.  Magnetic resonance of a single molecular spin , 1993, Nature.

[129]  Thomas Basché,et al.  Optical Spectroscopy Of Single Impurity Molecules In Solids , 1993, Laser Applications to Chemical Analysis.

[130]  W. E. Moerner,et al.  Optische Spektroskopie von einzelnen Dotierungsmolekülen in Festkörpern , 1993 .

[131]  Dispersed fluorescence spectra of single molecules of pentacene in p- terphenyl , 1993 .

[132]  Talon,et al.  Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. , 1992, Physical review letters.

[133]  M. Orrit,et al.  Stark effect on single molecules in a polymer matrix , 1992 .

[134]  W. P. Ambrose,et al.  Optical spectra and kinetics of single impurity molecules in a polymer: spectral diffusion and persistent spectral hole burning , 1992 .

[135]  W. Moerner,et al.  Optical modification of a single impurity molecule in a solid , 1992, Nature.

[136]  W. P. Ambrose,et al.  Detection and spectroscopy of single pentacene molecules in a p‐terphenyl crystal by means of fluorescence excitation , 1991 .

[137]  Ambrose,et al.  Comment on "Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal" , 1991, Physical review letters.

[138]  W. P. Ambrose,et al.  Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal , 1991, Nature.

[139]  Steven A. Soper,et al.  Detection of single fluorescent molecules , 1990 .

[140]  M. Orrit,et al.  Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. , 1990, Physical review letters.

[141]  H. Dehmelt Experiments with an isolated subatomic particle at rest , 1990, 44th Annual Symposium on Frequency Control.

[142]  W. Moerner,et al.  Optical detection and probing of single dopant molecules of pentacene in a p-terphenyl host crystal by means of absorption spectroscopy , 1990 .

[143]  R A Mathies,et al.  Single-molecule fluorescence detection: autocorrelation criterion and experimental realization with phycoerythrin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[144]  W. Moerner,et al.  Optical detection and spectroscopy of single molecules in a solid. , 1989, Physical review letters.

[145]  W. Moerner,et al.  Pseudo-Stark effect and FM/Stark double-modulation spectroscopy for the detection of statistical fine structure in alexandrite , 1988 .

[146]  M. Scully,et al.  Laser experiments with single atoms as a test of basic physics , 1988 .

[147]  M. Sheetz,et al.  Tracking kinesin-driven movements with nanometre-scale precision , 1988, Nature.

[148]  C. A. Walsh,et al.  Dynamics in low temperature glasses: Theory and experiments on optical dephasing, spectral diffusion, and hydrogen tunneling , 1988 .

[149]  W. Moerner,et al.  Statistical fine structure in the inhomogeneously broadened electronic origin of pentacene in p‐terphenyl , 1988 .

[150]  Moerner,et al.  Statistical fine structure of inhomogeneously broadened absorption lines. , 1987, Physical review letters.

[151]  D. Wineland,et al.  Laser Spectroscopy of Trapped Atomic Ions , 1987, Science.

[152]  G. Binnig,et al.  Scanning tunneling microscopy-from birth to adolescence , 1987 .

[153]  N. Bobroff Position measurement with a resolution and noise‐limited instrument , 1986 .

[154]  D. Haarer,et al.  Structural Relaxation Processes in Polymers and Glasses as Studied by High Resolution Optical Spectroscopy , 1986 .

[155]  Gary C. Bjorklund,et al.  Residual amplitude modulation in laser electro-optic phase modulation , 1985 .

[156]  W. E. Moerner,et al.  Can single-photon processes provide useful materials for frequency-domain optical storage? , 1985 .

[157]  D. Haarer,et al.  Photochemical Hole Burning: A Spectroscopic Study of Relaxation Processes in Polymers and Glasses , 1984 .

[158]  J. Friedrich,et al.  Photochemisches Lochbrennen und optische Relaxationsspektroskopie in Polymeren und Gläsern , 1984 .

[159]  W. Wilson,et al.  Intersystem crossing from singlet states of molecular dimers and monomers in mixed molecular crystals: picosecond stimulated photon echo experiments , 1984 .

[160]  Gary C. Bjorklund,et al.  Frequency modulation (FM) spectroscopy , 1983 .

[161]  W. Webb,et al.  Diffusion of low density lipoprotein-receptor complex on human fibroblasts , 1982, The Journal of cell biology.

[162]  G. Bjorklund,et al.  Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions. , 1980, Optics letters.

[163]  D. Wiersma,et al.  Fluorescence transient and optical free induction decay spectroscopy of pentacene in mixed crystals at 2 K. Determination of intersystem crossing and internal conversion rates , 1979 .

[164]  Ahmed H. Zewail,et al.  Radiationless relaxation and optical dephasing of molecules excited by wide- and narrow-band lasers. II. Pentacene in low-temperature mixed crystals , 1979 .

[165]  J. Hayes,et al.  Mechanisms of non-photochemical hole-burning in organic glasses , 1978 .

[166]  Watt W. Webb,et al.  Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow , 1978 .

[167]  J. Hayes,et al.  Non-photochemical hole burning and impurity site relaxation processes in organic glasses☆ , 1978 .

[168]  T. Hirschfeld Optical microscopic observation of single small molecules. , 1976, Applied optics.

[169]  B. Sakmann,et al.  Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.

[170]  S. Aragon,et al.  Fluorescence correlation spectroscopy as a probe of molecular dynamics , 1976 .

[171]  B. Kharlamov,et al.  Stable ‘gap’ in absorption spectra of solid solutions of organic molecules by laser irradiation , 1974 .

[172]  Måns Ehrenberg,et al.  Rotational brownian motion and fluorescence intensify fluctuations , 1974 .

[173]  E. Elson,et al.  Fluorescence correlation spectroscopy. I. Conceptual basis and theory , 1974 .

[174]  W. Webb,et al.  Fluorescence correlation spectroscopy. II. An experimental realization , 1974, Biopolymers.

[175]  R. I. Personov,et al.  The effect of fine structure appearance in laser-excited fluorescence spectra of organic compounds in solid solutions , 1972 .

[176]  W. Webb,et al.  Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy , 1972 .

[177]  Am Stoneham,et al.  Shapes of Inhomogeneously Broadened Resonance Lines in Solids (Invited Talk) , 1969 .

[178]  William J. Tango,et al.  Spectroscopy of K2 Using Laser-Induced Fluorescence , 1968 .

[179]  W. Heisenberg The Physical Principles of the Quantum Theory , 1930 .

[180]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .