Examination of singular scalar light fields using wavelet processing of fork fringes.

A single frame fork fringe pattern automatic processing method for detecting optical vortices in coherent light fields using two-dimensional continuous wavelet transformation is proposed. When a vortex sign is of no importance, it is sufficient to calculate the fork interferogram modulation distribution and its normalized gradient map to establish vortex locations without resorting to complicated phase calculations. Normalization of modulation gradient maps enables unambiguous vortex discrimination from local modulation minima without phase singularity. The issue of vortex detection resolution versus carrier fringe frequency and orientation is discussed. Corroboration of simulation and experimental studies of integer and noninteger singular light beams as well as speckle fields reported in the literature and analyzed using different approaches is presented.

[1]  G. H. Kaufmann,et al.  Phase retrieval of singular scalar light fields using a two-dimensional directional wavelet transform and a spatial carrier. , 2008, Applied optics.

[2]  M. Berry,et al.  Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Enrique J. Galvez,et al.  Non-integral vortex structures in diffracted light beams , 2007, SPIE OPTO.

[4]  Sunil Vyas,et al.  Vortex array generation by interference of spherical waves. , 2007, Applied optics.

[5]  Y. Kivshar,et al.  Mapping phases of singular scalar light fields. , 2008, Optics letters.

[6]  Miles J. Padgett,et al.  Observation of the vortex structure of a non-integer vortex beam , 2004 .

[7]  Jan Masajada,et al.  Optical vortex generation by three plane wave interference , 2001 .

[8]  Isaac Freund,et al.  OPTICAL VORTICES IN GAUSSIAN RANDOM WAVE FIELDS : STATISTICAL PROBABILITY DENSITIES , 1994 .

[9]  Krzysztof Patorski,et al.  Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform. , 2010, Applied optics.

[10]  E. J. Galvez,et al.  Composite optical vortices formed by collinear Laguerre-Gauss beams , 2006, SPIE OPTO.

[11]  S. Hanson,et al.  Spatial Behaviour of Singularities in Fractal- and Gaussian Speckle Fields , 2009 .

[12]  Piotr Kurzynowski,et al.  Optical vortices generation using the Wollaston prism. , 2006, Applied optics.

[13]  Paramasivam Senthilkumaran,et al.  Singular Optics , 2012 .

[14]  Wei Wang,et al.  Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function. , 2006, Physical review letters.

[15]  Syed Twareque Ali,et al.  Two-Dimensional Wavelets and their Relatives , 2004 .

[16]  M. J. Padgett,et al.  Vortex knots in light , 2005 .

[17]  M. Padgett,et al.  Illustrations of optical vortices in three dimensions , 2006 .

[18]  I. V. Basistiy,et al.  Synthesis and analysis of optical vortices with fractional topological charges , 2004 .

[19]  Michael V Berry,et al.  Optical vortices evolving from helicoidal integer and fractional phase steps , 2004 .

[20]  Enrique J. Galvez,et al.  Composite vortex patterns formed by component light beams with non-integral topological charge , 2007, SPIE OPTO.

[21]  D. Fried,et al.  Branch cuts in the phase function. , 1992, Applied optics.

[22]  Kevin Murphy,et al.  Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor. , 2010, Optics express.

[23]  Sunil Vyas,et al.  Interferometric optical vortex array generator. , 2007, Applied optics.

[24]  Munther A Gdeisat,et al.  Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform. , 2006, Applied optics.

[25]  A. N. Manachinsky,et al.  Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor. , 2007, Optics letters.

[26]  M. Berry,et al.  Knotted and linked phase singularities in monochromatic waves , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Huanfeng Ma,et al.  Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing , 2006 .