Parameter estimation in biochemical pathways: a comparison of global optimization methods.

Here we address the problem of parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways. This problem is stated as a nonlinear programming (NLP) problem subject to nonlinear differential-algebraic constraints. These problems are known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based) local optimization methods fail to arrive at satisfactory solutions. To surmount this limitation, the use of several state-of-the-art deterministic and stochastic global optimization methods is explored. A case study considering the estimation of 36 parameters of a nonlinear biochemical dynamic model is taken as a benchmark. Only a certain type of stochastic algorithm, evolution strategies (ES), is able to solve this problem successfully. Although these stochastic methods cannot guarantee global optimality with certainty, their robustness, plus the fact that in inverse problems they have a known lower bound for the cost function, make them the best available candidates.

[1]  C. Darwin The Origin of Species by Means of Natural Selection, Or, The Preservation of Favoured Races in the Struggle for Life , 1859 .

[2]  Samuel H. Brooks A Discussion of Random Methods for Seeking Maxima , 1958 .

[3]  A. Gray,et al.  I. THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION , 1963 .

[4]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[5]  R. Goulcher,et al.  The solution of steady-state chemical engineering optimisation problems using a random-search algorithm , 1978 .

[6]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[7]  G. T. Timmer,et al.  Stochastic global optimization methods part I: Clustering methods , 1987, Math. Program..

[8]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  Thomas Bäck,et al.  Genetic Algorithms and Evolution Strategies - Similarities and Differences , 1990, PPSN.

[11]  Robert L. Smith,et al.  Pure adaptive search in global optimization , 1992, Math. Program..

[12]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[13]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[14]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[15]  Pedro Mendes,et al.  GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems , 1993, Comput. Appl. Biosci..

[16]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[17]  Thomas Bäck,et al.  Evolution Strategies: An Alternative Evolutionary Algorithm , 1995, Artificial Evolution.

[18]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[19]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[20]  János D. Pintér,et al.  Global optimization in action , 1995 .

[21]  D. Fogel,et al.  A comparison of methods for self-adaptation in evolutionary algorithms. , 1995, Bio Systems.

[22]  Julio R. Banga,et al.  Global Optimization of Chemical Processes using Stochastic Algorithms , 1996 .

[23]  C. Storey,et al.  Application of Stochastic Global Optimization Algorithms to Practical Problems , 1997 .

[24]  N. Hansen,et al.  Convergence Properties of Evolution Strategies with the Derandomized Covariance Matrix Adaptation: T , 1997 .

[25]  Julio R. Banga,et al.  Stochastic Dynamic Optimization of Batch and Semicontinuous Bioprocesses , 1997 .

[26]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[27]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[28]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[29]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[30]  Aimo A. Törn,et al.  Stochastic Global Optimization: Problem Classes and Solution Techniques , 1999, J. Glob. Optim..

[31]  Kenneth Holmstrom,et al.  The TOMLAB Optimization Environment in Matlab , 1999 .

[32]  Arnold Neumaier,et al.  Global Optimization by Multilevel Coordinate Search , 1999, J. Glob. Optim..

[33]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[34]  C. Floudas,et al.  Global Optimization for the Parameter Estimation of Differential-Algebraic Systems , 2000 .

[35]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[36]  Ingo Rechenberg,et al.  Case studies in evolutionary experimentation and computation , 2000 .

[37]  Jin-Kwang Bok,et al.  Convex underestimators for variational and optimal control problems , 2001 .

[38]  Lino A. Costa,et al.  Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems , 2001 .

[39]  Carmen G. Moles,et al.  Integrated process design and control via global optimization: A wastewater treatment plant case study , 2001, 2001 European Control Conference (ECC).

[40]  Claire S. Adjiman,et al.  A Rigorous Global Optimization Algorithm for Problems with Ordinary Differential Equations , 2002, J. Glob. Optim..

[41]  Kwang-Hyun Cho,et al.  Mathematical Modeling of the Influence of RKIP on the ERK Signaling Pathway , 2003, CMSB.

[42]  J. Timmer,et al.  Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Kenneth Holmström,et al.  The TOMLAB Optimization Environment , 2004 .

[44]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[45]  I. Grossmann Global Optimization in Engineering Design , 2010 .