Characterization of a Family IV uracil DNA glycosylase from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5.

[1]  P. Oger,et al.  An alternative pathway for repair of deaminated bases in DNA triggered by archaeal NucS endonuclease. , 2019, DNA repair.

[2]  P. Oger,et al.  Biochemical characterization and mutational studies of a thermostable uracil DNA glycosylase from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. , 2019, International journal of biological macromolecules.

[3]  E. Bonch‐Osmolovskaya,et al.  Complete Genome Sequence of the Hyperthermophilic and Piezophilic Archaeon Thermococcus barophilus Ch5, Capable of Growth at the Expense of Hydrogenogenesis from Carbon Monoxide and Formate , 2016, Genome Announcements.

[4]  Y. Ishino,et al.  A novel endonuclease that may be responsible for damaged DNA base repair in Pyrococcus furiosus , 2015, Nucleic acids research.

[5]  N. Schormann,et al.  Uracil‐DNA glycosylases—Structural and functional perspectives on an essential family of DNA repair enzymes , 2014, Protein science : a publication of the Protein Society.

[6]  S. Wallace Base excision repair: a critical player in many games. , 2014, DNA repair.

[7]  Allyn R. Brice,et al.  Specificity and Catalytic Mechanism in Family 5 Uracil DNA Glycosylase* , 2014, The Journal of Biological Chemistry.

[8]  N. Birkeland,et al.  The pH optimum of native uracil-DNA glycosylase of Archaeoglobus fulgidus compared to recombinant enzyme indicates adaption to cytosolic pH. , 2014, Acta biochimica Polonica.

[9]  A. Yasui Alternative excision repair pathways. , 2013, Cold Spring Harbor perspectives in biology.

[10]  刘建华,et al.  Biochemical Characterization of Uracil-DNA Glycosylase from Pyrococcus furiosus , 2012 .

[11]  Jian-hua Liu,et al.  Characterization of Family IV UDG from Aeropyrum pernix and Its Application in Hot-Start PCR by Family B DNA Polymerase , 2011, PloS one.

[12]  J. Hoseki,et al.  Crystal structure of family 5 uracil-DNA glycosylase bound to DNA. , 2007, Journal of molecular biology.

[13]  S. Bell,et al.  Characterization of an archaeal family 4 uracil DNA glycosylase and its interaction with PCNA and chromatin proteins. , 2005, The Biochemical journal.

[14]  A. Okamoto,et al.  Crystal structure of a family 4 uracil-DNA glycosylase from Thermus thermophilus HB8. , 2003, Journal of molecular biology.

[15]  Hyun-Young Park,et al.  A novel uracil-DNA glycosylase family related to the helix-hairpin-helix DNA glycosylase superfamily. , 2003, Nucleic acids research.

[16]  오재원,et al.  A novel uracil‐DNA glycosylase family related to the helix–hairpin–helix DNA glycosylase superfamily , 2003 .

[17]  J. Jiricny,et al.  A novel uracil‐DNA glycosylase with broad substrate specificity and an unusual active site , 2002, The EMBO journal.

[18]  H. Fritz,et al.  A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus. , 2002, Nucleic acids research.

[19]  L. Pearl,et al.  An Iron-Sulfur Cluster in the Family 4 Uracil-DNA Glycosylases* , 2002, The Journal of Biological Chemistry.

[20]  P. Ruoff,et al.  Excision of uracil from DNA by the hyperthermophilic Afung protein is dependent on the opposite base and stimulated by heat-induced transition to a more open structure. , 2001, Mutation research.

[21]  Jeffrey H. Miller,et al.  Biochemical Characterization of Uracil Processing Activities in the Hyperthermophilic Archaeon Pyrobaculum aerophilum * , 2001, The Journal of Biological Chemistry.

[22]  J. Drake,et al.  Genetic fidelity under harsh conditions: Analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  W. Franklin,et al.  Uracil-DNA Glycosylase in the Extreme Thermophile Archaeoglobus fulgidus * , 2000, The Journal of Biological Chemistry.

[24]  U. Sleytr,et al.  Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. , 1999, International journal of systematic bacteriology.

[25]  D. Grogan,et al.  Rates of spontaneous mutation in an archaeon from geothermal environments , 1997, Journal of bacteriology.

[26]  L. Pearl,et al.  Uracil-DNA glycosylase activities in hyperthermophilic micro-organisms. , 1996, FEMS microbiology letters.

[27]  P. Karran,et al.  Site-specific mutagenesis in vivo by single methylated or deaminated purine bases. , 1986, Mutation research.

[28]  O. Kaboev,et al.  Uracil-DNA glycosylase of thermophilic Thermothrix thiopara , 1985, Journal of bacteriology.

[29]  B Nyberg,et al.  Heat-induced deamination of cytosine residues in deoxyribonucleic acid. , 1974, Biochemistry.