Lightning locating systems: Insights on characteristics and validation techniques

Ground-based and satellite-based lightning locating systems are the most common ways to detect and geolocate lightning. Depending upon the frequency range of operation, LLSs may report a variety of processes and characteristics associated with lightning flashes including channel formation, leader pulses, cloud-to-ground return strokes, M-components, ICC pulses, cloud lightning pulses, location, duration, peak current, peak radiated power and energy, and full spatial extent of channels. Lightning data from different types of LLSs often provide complementary information about thunderstorms. For all the applications of lightning data, it is critical to understand the information that is provided by various lightning locating systems in order to interpret it correctly and make the best use of it. In this study, we summarize the various methods to geolocate lightning, both ground-based and satellite-based, and discuss the characteristics of lightning data available from various sources. The performance characteristics of lightning locating systems are determined by their ability to geolocate lightning events accurately with high detection efficiency and with low false detections and report various features of lightning correctly. Different methods or a combination of methods may be used to validate the performance characteristics of different types of lightning locating systems. We examine these methods and their applicability in validating the performance characteristics of different LLS types.

[1]  Dong Zheng,et al.  A statistical method for evaluating detection efficiency of lightning location network and its application , 2013 .

[2]  Dongfang Wang,et al.  Lightning VHF radiation location system based on short-baseline TDOA technique — Validation in rocket-triggered lightning , 2013 .

[3]  Ronald L. Holle,et al.  Nowcasting of Thunderstorms Using VHF Measurements , 2009 .

[4]  E. Kosarev,et al.  Ultrahigh frequency radiation from lightnings , 1970 .

[5]  W. J. Koshak,et al.  Retrieving the Fraction of Ground Flashes from Satellite Lightning Imager Data Using CONUS-Based Optical Statistics , 2011 .

[6]  Wolfgang Schulz,et al.  Performance Characteristics of Distinct Lightning Detection Networks Covering Belgium , 2013 .

[7]  Umran S. Inan,et al.  Long‐range lightning geolocation using a VLF radio atmospheric waveform bank , 2010 .

[8]  B. Turman,et al.  Synoptic-Scale Satellite Lightning Observations in Conjunction with Tornadoes , 1980 .

[9]  M. Paolone,et al.  Determination of lightning currents from far electromagnetic fields: Effect of a strike object , 2004 .

[10]  R. Henderson,et al.  Global Distribution of Midnight Lightning: September 1977 to August 1978 , 1986 .

[11]  Robert H. Holzworth,et al.  Performance Assessment of the World Wide Lightning Location Network (WWLLN), Using the Los Alamos Sferic Array (LASA) as Ground Truth , 2006 .

[12]  K.L. Cummins,et al.  An Overview of Lightning Locating Systems: History, Techniques, and Data Uses, With an In-Depth Look at the U.S. NLDN , 2009, IEEE Transactions on Electromagnetic Compatibility.

[13]  G. Diendorfer,et al.  Validation of detection of positive flashes by the austrian lightning location system ALDIS , 2013, 2013 International Symposium on Lightning Protection (XII SIPDA).

[14]  K. Berger Parameters of lightning flashes , 1975 .

[15]  E. Ney,et al.  Lightning Observations by Satellite , 1971, Nature.

[16]  Robert H. Holzworth,et al.  Far-Field Power of Lightning Strokes as Measured by the World Wide Lightning Location Network , 2012 .

[17]  J. L. Bermudeza,et al.  Determination of lightning currents from far electromagnetic fields : Effect of a strike object , 2007 .

[18]  T. Ushio,et al.  VHF lightning observations by digital interferometry on JEM-GLIMS , 2014 .

[19]  Raúl E. López,et al.  Lightning from Two National Detection Networks Related to Vertically Integrated Liquid and Echo-Top Information from WSR-88D Radar , 1995 .

[20]  Vladimir A. Rakov,et al.  Performance characteristics of the NLDN for return strokes and pulses superimposed on steady currents, based on rocket‐triggered lightning data acquired in Florida in 2004–2012 , 2014 .

[21]  K. Strong,et al.  A performance assessment of the World Wide Lightning Location Network (WWLLN) via comparison with the Canadian Lightning Detection Network (CLDN) , 2010 .

[22]  Vladimir A. Rakov,et al.  An evaluation of the performance characteristics of the U.S. National Lightning Detection Network in Florida using rocket‐triggered lightning , 2005 .

[23]  Tomoo Ushio,et al.  Effects of Charge Distribution in Thunderstorms on Lightning Propagation Paths in Darwin, Australia , 2011 .

[24]  William R. Burrows,et al.  The North American Lightning Detection Network (NALDN)—First Results: 1998–2000 , 2002 .

[25]  Robert H. Holzworth,et al.  Relative detection efficiency of the World Wide Lightning Location Network , 2012 .

[26]  Kenneth L. Cummins,et al.  Improved Lightning Locations in the Tohoku Region of Japan using Propagation and Waveform Onset Corrections , 2013 .

[27]  Vladimir A. Rakov,et al.  Electromagnetic Methods of Lightning Detection , 2013, Surveys in Geophysics.

[28]  Martin A. Uman,et al.  The RF spectra of first and subsequent lightning return strokes in the 1‐ to 200‐km range , 1980 .

[29]  P. Jamason,et al.  Performance evaluation of the U.S. National Lightning Detection , 1998 .

[30]  Carlos T. Mata,et al.  Evaluation of the Performance Characteristics of the CGLSS and NLDN Systems Based on Two Years of Ground-Truth Data from Launch Complex 39B, Kennedy Space Center, Florida , 2014 .

[31]  Robert H. Holzworth,et al.  Satellite triangulation of thunderstorms, from fading radio fields synchronously recorded on two orthogonal antennas , 2011 .

[32]  Scott D. Rudlosky,et al.  Evaluating WWLLN performance relative to TRMM/LIS , 2013 .

[33]  B. N. Turman,et al.  Analysis of lightning data from the DMSP satellite , 1978 .

[34]  D. Suszcynsky,et al.  SATELLITE-BASED GLOBAL LIGHTNING AND SEVERE STORM MONITORING USING VHF RECEIVERS , 2000 .

[35]  H. Christian Global Frequency and Distribution of Lightning as Observed From Space , 2001 .

[36]  T. Shindo,et al.  Lightning occurrence characteristics in Japan for 17 years: observation results with lightning location systems of electric power utilities from 1992 to 2008 , 2012 .

[37]  K. Cummins,et al.  The Intracloud Lightning Fraction in the Contiguous United States , 2017 .

[38]  Martin A. Uman,et al.  Some features of stroke occurrence in Florida lightning flashes , 1984 .

[39]  M. Murphy 8.2 CLOUD LIGHTNING PERFORMANCE AND CLIMATOLOGY OF THE U.S. BASED ON THE UPGRADED U.S. NATIONAL LIGHTNING DETECTION NETWORK , 2015 .

[40]  C. Nucci,et al.  On return stroke currents and remote electromagnetic fields associated with lightning strikes to tall structures: 2. Experiment and model validation , 2007 .

[41]  Zen Kawasaki,et al.  Broadband radio interferometer utilizing a sequential triggering technique for locating fast-moving electromagnetic sources emitted from lightning , 2000, IEEE Trans. Instrum. Meas..

[42]  Richard J. Blakeslee,et al.  Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted Diurnal Variability , 2002 .

[43]  M. Stock,et al.  Continuous broadband digital interferometry of lightning using a generalized cross‐correlation algorithm , 2014 .

[44]  Kenneth L. Cummins,et al.  A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network , 1998 .

[45]  Lawrence D. Carey,et al.  A Comparison of Two Ground-Based Lightning Detection Networks against the Satellite-Based Lightning Imaging Sensor (LIS) , 2014 .

[46]  Gerald J. Fishman,et al.  The lightning‐TGF relationship on microsecond timescales , 2011 .

[47]  William J. Koshak,et al.  The GOES-R GeoStationary Lightning Mapper (GLM) , 2012 .

[48]  Emmanouil N. Anagnostou,et al.  Evaluation of a long-range lightning detection network with receivers in Europe and Africa , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Umran S. Inan,et al.  Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations , 2013 .

[51]  Abram R. Jacobson,et al.  FORTE observations of lightning radio‐frequency signatures: Capabilities and basic results , 1999 .

[52]  Newbury Park in the current , 2017 .

[53]  Dong Zheng,et al.  Performance Evaluation for a Lightning Location System Based on Observations of Artificially Triggered Lightning and Natural Lightning Flashes , 2012 .

[54]  Osmar Pinto,et al.  Improvements in the detection efficiency model for the Brazilian lightning detection network (BrasilDAT) , 2009 .

[55]  D. E. Proctor,et al.  Lightning flashes with high origins , 1997 .

[56]  V. Kotroni,et al.  A comparison of lightning data provided by ZEUS and LINET networks over Western Europe , 2009 .

[57]  P. Krehbiel,et al.  Accuracy of the Lightning Mapping Array , 2003 .

[58]  P. Jamason,et al.  Performance evaluation of the U.S. National Lightning , 1998 .

[59]  W. Koshak,et al.  The Optical Transient Detector (OTD): Instrument Characteristics and Cross-Sensor Validation , 2000 .

[60]  V. Rakov,et al.  Parameters of Electric Field Waveforms Produced by Positive Lightning Return Strokes , 2014, IEEE Transactions on Electromagnetic Compatibility.

[61]  Jian Zhang,et al.  Weather Radar Coverage over the Contiguous United States , 2002 .

[62]  Umran S. Inan,et al.  Satellite observations of lightning‐induced electron precipitation , 1998 .

[63]  Lawrence D. Carey,et al.  Lightning location relative to storm structure in a leading‐line, trailing‐stratiform mesoscale convective system , 2005 .

[64]  James B. Brundell,et al.  VLF lightning location by time of group arrival (TOGA) at multiple sites , 2002 .

[65]  Paul Krehbiel,et al.  Observations of VHF source powers radiated by lightning , 2001 .

[66]  S. Heckman,et al.  The Application of Total Lightning Detection for Severe Storm Prediction , 2010 .

[67]  Steven J. Goodman,et al.  Comparison of ground‐based 3‐dimensional lightning mapping observations with satellite‐based LIS observations in Oklahoma , 2000 .

[68]  Gerhard Diendorfer,et al.  On the Location of Lightning Discharges Using Time Reversal of Electromagnetic Fields , 2014, IEEE Transactions on Electromagnetic Compatibility.

[69]  Jeffrey C. Bailey,et al.  A class of unusual lightning electric field waveforms with very strong high‐frequency radiation , 1989 .

[70]  W. David Rust,et al.  A Comparison of the Optical Pulse Characteristics of Intracloud and Cloud-to-Ground Lightning as Observed above Clouds. , 1988 .

[71]  Antti Mäkelä,et al.  The comparison of GLD360 and EUCLID lightning location systems in Europe , 2013 .

[72]  S. Cummer,et al.  Measurements and implications of the relationship between lightning and terrestrial gamma ray flashes , 2005 .

[73]  John M. Hall,et al.  The Lightning Imaging Sensor , 1999 .

[74]  Gerhard Diendorfer,et al.  Some Parameters of Correlated Current and Radiated Field Pulses from Lightning to the Gaisberg Tower , 2010 .

[75]  Vladimir A. Rakov,et al.  Performance characteristics of the ENTLN evaluated using rocket-triggered lightning data , 2015 .

[76]  Kenneth L. Cummins,et al.  Upward lightning observations from towers in Rapid City, South Dakota and comparison with National Lightning Detection Network data, 2004-2010 , 2012 .

[77]  Bernard Vonnegut,et al.  Photographs of lightning from the Space Shuttle , 1983 .

[78]  K. Cummins,et al.  Combined Satellite- and Surface-Based Estimation of the Intracloud Cloud-to-Ground Lightning Ratio over the Continental United States , 2001 .

[79]  Raúl E. López,et al.  Overview of real-time lightning detection systems and their meteorological uses , 1993 .

[80]  Richard J. Blakeslee,et al.  The detection of lightning from geostationary orbit , 1989 .

[81]  W. J. Koshak,et al.  Optical Characteristics of OTD Flashes and the Implications for Flash-Type Discrimination , 2010 .

[82]  Vladislav Mazur,et al.  Initial comparison of lightning mapping with operational time‐of‐arrival and interferometric systems , 1997 .

[83]  D. Poelman,et al.  Comparing a Regional, Subcontinental and Long-Range Lightning Location System over the Benelux and France , 2013 .

[84]  Steven J. Goodman,et al.  A Diagnostic Analysis of the Kennedy Space Center LDAR Network. 1; Data Characteristics , 2001 .

[85]  Vladimir A. Rakov,et al.  First versus subsequent return-stroke current and field peaks in negative cloud-to-ground lightning discharges , 2008 .

[86]  Kristen L. Corbosiero,et al.  An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth , 2010 .

[87]  K. Cummins,et al.  Development of a Long-Range Lightning Detection Network for the Pacific: Construction, Calibration, and Performance* , 2009 .

[88]  Vladimir A. Rakov,et al.  Evaluation of U.S. National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004-2009 , 2011 .

[89]  F. Rachidi,et al.  On the Current Peak Estimates Provided by Lightning Detection Networks for Lightning Return Strokes to Tall Towers , 2009, IEEE Transactions on Electromagnetic Compatibility.

[90]  Vladimir A. Rakov,et al.  Evaluation of the GLD360 performance characteristics using rocket‐and‐wire triggered lightning data , 2014 .

[91]  J. Green,et al.  Optical observations of terrestrial lightning by the FORTE satellite photodiode detector , 2001 .

[92]  K. Norton The Propagation of Radio Waves over the Surface of the Earth and in the Upper Atmosphere , 1936, Proceedings of the Institute of Radio Engineers.

[93]  William R. Burrows,et al.  The North American Lightning Detection Network (NALDN)—Analysis of Flash Data: 2001–09 , 2011 .

[94]  David M. Suszcynsky,et al.  Coordinated observations of optical lightning from space using the FORTE photodiode detector and CCD imager , 2001 .

[95]  Xuan-Min Shao,et al.  The spatial and temporal development of intracloud lightning , 1996 .

[96]  Martin A. Uman,et al.  Lightning amplitude spectra in the interval from 100 kHz to 20 MHz , 1981 .

[97]  Vernon Cooray,et al.  Effects of propagation on the return stroke radiation fields , 1987 .

[98]  Kenneth L. Cummins,et al.  National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004 , 2007 .

[99]  Mitsuteru Sato,et al.  VHF Lightning Observations on JEM-GLIMS Mission , 2011 .

[100]  Farhad Rachidi,et al.  On return stroke currents and remote electromagnetic fields associated with lightning strikes to tall structures. 1. Computational models , 2007 .

[101]  Martin A. Uman,et al.  A Gated, Wideband Magnetic Direction Finder for Lightning Return Strokes , 1976 .

[102]  V. Rakov,et al.  Lightning: Physics and Effects , 2007 .

[103]  D. E. Proctor VHF radio pictures of cloud flashes , 1981 .

[104]  Osmar Pinto,et al.  A NEW PERFORMANCE EVALUATION OF THE BRAZILIAN LIGHTNING LOCATION SYSTEM (RINDAT) BASED ON HIGH-SPEED CAMERA OBSERVATIONS OF NATURAL NEGATIVE GROUND FLASHES , 2006 .

[105]  V. Rakov,et al.  Remote Measurements of Currents in Cloud Lightning Discharges , 2011, IEEE Transactions on Electromagnetic Compatibility.

[106]  Ting Wu,et al.  Review of recent progress in lightning and thunderstorm detection techniques in Asia , 2015 .

[107]  Gerhard Diendorfer,et al.  Review of CIGRE Report Cloud-to-Ground Lightning Parameters Derived from Lightning Location Systems – The Effects of System Performance , 2009 .

[108]  Richard J. Blakeslee,et al.  Gridded lightning climatology from TRMM-LIS and OTD: Dataset description , 2014 .

[109]  J. C. Willett,et al.  Submicrosecond intercomparison of radiation fields and currents in triggered lightning return strokes based on the transmission-line model , 1989 .

[110]  Vladimir A. Rakov,et al.  On phenomenology of compact intracloud lightning discharges , 2010 .