The interior-point revolution in optimization: History, recent developments, and lasting consequences
暂无分享,去创建一个
[1] John Milnor,et al. GROUPS WHICH ACT ON Su WITHOUT FIXED POINTS. , 1957 .
[2] Anthony V. Fiacco,et al. Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .
[3] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[4] W. Murray,et al. Analytical expressions for the eigenvalues and eigenvectors of the Hessian matrices of barrier and penalty functions , 1971 .
[5] E. Polak. Introduction to linear and nonlinear programming , 1973 .
[6] Philip E. Gill,et al. Practical optimization , 1981 .
[7] R. Hamilton. Three-manifolds with positive Ricci curvature , 1982 .
[8] Narendra Karmarkar,et al. A new polynomial-time algorithm for linear programming , 1984, Comb..
[9] Michael A. Saunders,et al. On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..
[10] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[11] R. Fletcher. Practical Methods of Optimization , 1988 .
[12] Johan Pas,et al. Uniform p-adic cell decomposition and local zeta functions. , 1989 .
[13] M. Todd,et al. Chapter II Linear programming , 1989 .
[14] Philip E. Gill,et al. Numerical Linear Algebra and Optimization , 1991 .
[15] Stig-Inge Gustafsson,et al. Linear programming optimization in CHP networks , 1991 .
[16] V. Kvetan,et al. Parenteral nutrition and oral intake: effect of glucose and fat infusions. , 1991, JPEN. Journal of parenteral and enteral nutrition.
[17] Margaret H. Wright,et al. Interior methods for constrained optimization , 1992, Acta Numerica.
[18] Clóvis C. Gonzaga,et al. Path-Following Methods for Linear Programming , 1992, SIAM Rev..
[19] Gautam Appa,et al. Numerical Linear Algebra and Optimization: Volume 1 , 1992 .
[20] R. Hamilton. The Harnack estimate for the Ricci flow , 1993 .
[21] P. Toint,et al. A note on using alternative second-order models for the subproblems arising in barrier function methods for minimization , 1994 .
[22] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .
[23] R. D. Murphy,et al. Iterative solution of nonlinear equations , 1994 .
[24] Margaret H. Wright,et al. Some properties of the Hessian of the logarithmic barrier function , 1994, Math. Program..
[25] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[26] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[27] Margaret H. Wright,et al. Why a Pure Primal Newton Barrier Step May be Infeasible , 1995, SIAM J. Optim..
[28] G. Perelman. Spaces with Curvature Bounded Below , 1995 .
[29] Stephen J. Wright. Stability of Linear Equations Solvers in Interior-Point Methods , 1995, SIAM J. Matrix Anal. Appl..
[30] Alexander Shapiro,et al. On Eigenvalue Optimization , 1995, SIAM J. Optim..
[31] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[32] T. Tsuchiya,et al. On the formulation and theory of the Newton interior-point method for nonlinear programming , 1996 .
[33] Joseph R. Shinnerl,et al. Stability of Symmetric Ill-Conditioned Systems Arising in Interior Methods for Constrained Optimization , 1996, SIAM J. Matrix Anal. Appl..
[34] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[35] Stephen J. Wright. Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.
[36] R. Hamilton. Four-manifolds with positive isotropic curvature , 1997 .
[37] Motivic Igusa zeta functions , 1998, math/9803040.
[38] Michael L. Overton,et al. Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..
[39] Jean-Philippe Vial,et al. Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.
[40] Michael L. Overton,et al. A Primal-dual Interior Method for Nonconvex Nonlinear Programming , 1998 .
[41] Robert J. Vanderbei,et al. Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.
[42] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[43] Yinyu Ye,et al. Interior point algorithms: theory and analysis , 1997 .
[44] Anders Forsgren,et al. Primal-Dual Interior Methods for Nonconvex Nonlinear Programming , 1998, SIAM J. Optim..
[45] William Fulton,et al. Intersection theory, Second Edition , 1998, Ergebnisse der Mathematik und ihrer Grenzgebiete.
[46] Margaret H. Wright,et al. Ill-Conditioning and Computational Error in Interior Methods for Nonlinear Programming , 1998, SIAM J. Optim..
[47] Stephen J. Wright. Modified Cholesky Factorizations in Interior-Point Algorithms for Linear Programming , 1999, SIAM J. Optim..
[48] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[49] R. Hamilton. Non-singular solutions of the Ricci flow on three-manifolds , 1999 .
[50] J. Denef,et al. Germs of arcs on singular algebraic varieties and motivic integration , 1999 .
[51] J. Denef,et al. Definable sets, motives and p-adic integrals , 1999, math/9910107.
[52] E. Looijenga. Motivic measures , 2000, math/0006220.
[53] Jorge Nocedal,et al. A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..
[54] Takao Yamaguchi,et al. Collapsing Three-Manifolds Under a Lower Curvature Bound , 2000 .
[55] P. Toint,et al. A primal-dual algorithm for minimizing a non-convex function subject to bound and linear equality constraints , 2000 .
[56] Nicholas I. M. Gould,et al. A primal-dual trust-region algorithm for non-convex nonlinear programming , 2000, Math. Program..
[57] F. Loeser,et al. Motivic integration on smooth rigid varieties and invariants of degenerations , 2001, math/0107134.
[58] Shang-Hua Teng,et al. Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.
[59] Stephen J. Wright. Effects of Finite-Precision Arithmetic on Interior-Point Methods for Nonlinear Programming , 2001, SIAM J. Optim..
[60] Integration motivique sur les schemas formels , 2001, math/0112249.
[61] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[62] Anders Forsgren,et al. Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..
[63] G. Perelman. The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.
[64] On some rational generating series occuring in arithmetic geometry , 2002, math/0212202.
[65] Robert E. Bixby,et al. Solving Real-World Linear Programs: A Decade and More of Progress , 2002, Oper. Res..
[67] G. Perelman. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds , 2003, math/0307245.
[68] Volume collapsed three-manifolds with a lower curvature bound , 2003, math/0304472.
[69] G. Perelman. Ricci flow with surgery on three-manifolds , 2003, math/0303109.
[70] E. Lupercio,et al. The Global Mckay–Ruan Correspondence Via Motivic Integration , 2003, math/0308200.
[71] An introduction to motivic integration , 1999, math/9911179.
[72] F. Loeser,et al. Fonctions constructibles et intégration motivique I , 2004, math/0403349.