Using Dempster-Shafer's Theory of Evidence to Combine Aspects of Information Use

In this paper we propose a model for relevance feedback. Our model combines evidence from user's relevance assessments with algorithms describing how words are used within documents. We motivate the use of the Dempster-Shafer framework as an appropriate theory for modelling combination of evidence. This model also incorporates the uncertain nature of information retrieval and relevance feedback. We discuss the sources of uncertainty in combining evidence in information retrievel and the importance of combining evidence in relevance feedback. We also present results from a series of experiments that highlight various aspects of our approach and discuss our findings.

[1]  Carol L. Barry,et al.  Users' Criteria for Relevance Evaluation: A Cross-situational Comparison , 1998, Inf. Process. Manag..

[2]  Barry O'Sullivan,et al.  Retrieval through explanation: an abductive inference approach to relevance feedback , 1999 .

[3]  Catherine Berrut,et al.  An Image Retrieval System Based on the Visualization of System Relevance via Documents , 1997, DEXA.

[4]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[5]  W. Bruce Croft,et al.  Relevance feedback and inference networks , 1993, SIGIR.

[6]  Ruy Luiz Milidiú,et al.  Belief Function Model for information retrieval , 1993 .

[7]  Pertti Vakkari,et al.  Relevance and contributing information types of searched documents in task performance , 2000, SIGIR '00.

[8]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[9]  Mounia Lalmas,et al.  Selective Relevance Feedback Using Term Characteristics , 1999, CoLIS.

[10]  Mounia Lalmas,et al.  Representing and retrieving structured documents using the Dempster-Shafer theory of evidence: modelling and evaluation , 1998, J. Documentation.

[11]  Joon Ho Lee,et al.  Combining the Evidence of Different Relevance Feedback Methods for Information Retrieval , 1998, Inf. Process. Manag..

[12]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[13]  David Ellis,et al.  A Behavioural Approach to Information Retrieval System Design , 1989, J. Documentation.

[14]  Alessandro Saffiotti,et al.  An AI view of the treatment of uncertainty , 1987, The Knowledge Engineering Review.

[15]  Donna K. Harman,et al.  Ranking Algorithms , 1992, Information Retrieval: Data Structures & Algorithms.

[16]  C. J. van Rijsbergen,et al.  Information Retrieval , 1979, Encyclopedia of GIS.

[17]  C. J. van Rijsbergen,et al.  Probabilistic Retrieval Revisited , 1992, Comput. J..

[18]  Donna K. Harman,et al.  Overview of the Fifth Text REtrieval Conference (TREC-5) , 1996, TREC.

[19]  Peter Ingwersen,et al.  The development of a method for the evaluation of interactive information retrieval systems , 1997, J. Documentation.

[20]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[21]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[22]  Peter Ingwersen,et al.  Polyrepresentation of information needs and semantic entities: elements of a cognitive theory for information retrieval interaction , 1994, SIGIR '94.

[23]  Robert A. Hummel,et al.  On the Use of the Dempster Shafer Model in Information Indexing and Retrieval Applications , 1993, Int. J. Man Mach. Stud..

[24]  Karen Spärck Jones A statistical interpretation of term specificity and its application in retrieval , 2021, J. Documentation.

[25]  Berthier A. Ribeiro-Neto,et al.  Link-based and content-based evidential information in a belief network model , 2000, SIGIR '00.

[26]  E. A. Fox,et al.  Combining the Evidence of Multiple Query Representations for Information Retrieval , 1995, Inf. Process. Manag..

[27]  Aslib,et al.  The journal of documentation , 1945 .

[28]  R. R. Wagner,et al.  Database and Expert Systems Applications (DEXA'02) , 2002 .