Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers for bioimaging and sensing applications

In this paper we present recent advances in Förster resonance energy transfer (FRET) sensing and bioimaging using nontoxic silicon quantum dots. (SiQDs) In our work, we prepare SiQDs-dye conjugates, with SiQDs serving as the donor which are covalently attached to organic dye acceptors via self-assembled monolayer linkers. Enzymatic cleavage of the peptide leads to changes in FRET response which was monitored using fluorescence lifetime imaging microscopy (FLIM-FRET). The combination of interfacial design and optical imaging presented in this work opens new opportunities for bio-applications using nontoxic silicon quantum dots.

[1]  J. L. Smith,et al.  Urinary trypsin levels observed in pancreas transplant patients with duodenocystostomies promote in vitro fibrinolysis and in vivo bacterial adherence to urothelial surfaces , 2004, Urological Research.

[2]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[3]  M. Knowles,et al.  Cystic fibrosis gene mutations and pancreatitis risk: relation to epithelial ion transport and trypsin inhibitor gene mutations. , 2001, Gastroenterology.

[4]  M. Montalti,et al.  Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. , 2015, Chemical Society reviews.

[5]  G. Kroemer,et al.  The mitochondrial death/life regulator in apoptosis and necrosis. , 1998, Annual review of physiology.

[6]  Jing Wang,et al.  One-step synthesis of water-dispersible silicon nanoparticles and their use in fluorescence lifetime imaging of living cells. , 2014, Journal of materials chemistry. B.

[7]  Mark Green,et al.  Some aspects of quantum dot toxicity. , 2011, Chemical communications.

[8]  Igor L. Medintz,et al.  Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. , 2009, Journal of the American Chemical Society.

[9]  S. N. Baker,et al.  Luminescent Carbon Nanodots: Emergent Nanolights , 2011 .

[10]  Igor L. Medintz,et al.  Quantum dot-based resonance energy transfer and its growing application in biology. , 2009, Physical chemistry chemical physics : PCCP.

[11]  H. Yeh,et al.  Single-quantum-dot-based DNA nanosensor , 2005, Nature materials.

[12]  Igor L. Medintz,et al.  Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. , 2003, Journal of the American Chemical Society.

[13]  J. Justin Gooding,et al.  Enhancing Quantum Dots for Bioimaging using Advanced Surface Chemistry and Advanced Optical Microscopy: Application to Silicon Quantum Dots (SiQDs) , 2015, Advanced materials.

[14]  Zeev Rosenzweig,et al.  Synthesis and application of quantum dots FRET-based protease sensors. , 2006, Journal of the American Chemical Society.

[15]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[16]  J. Justin Gooding,et al.  Wet Chemical Routes to the Assembly of Organic Monolayers on Silicon Surfaces via the Formation of Si—C Bonds: Surface Preparation, Passivation and Functionalization , 2010 .

[17]  Enrico Gratton,et al.  A novel fluorescence lifetime imaging system that optimizes photon efficiency , 2008, Microscopy research and technique.

[18]  E. Gratton,et al.  The phasor approach to fluorescence lifetime imaging analysis. , 2008, Biophysical journal.

[19]  Yi Yang,et al.  Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. , 2013, ACS nano.

[20]  Benjamin F. P. McVey,et al.  Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. , 2014, Accounts of chemical research.

[21]  赵仪 Phenol Formaldehyde Resin Nanoparticles Loaded with CdTe Quantum Dots: A Fluorescence Resonance Energy Transfer Probe for Optical Visual Detection of Copper(II) Ions , 2011 .

[22]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[23]  Jing Zou,et al.  Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles , 2004 .

[24]  P. Chu,et al.  Group IV nanoparticles: synthesis, properties, and biological applications. , 2010, Small.

[25]  Kristopher A Kilian,et al.  Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals. , 2009, Nano letters.

[26]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[27]  U. Kortshagen Nonthermal plasma synthesis of semiconductor nanocrystals , 2009 .

[28]  S. Schnell,et al.  Enzymological considerations for a theoretical description of the quantitative competitive polymerase chain reaction (QC-PCR). , 1997, Journal of theoretical biology.

[29]  Enrico Gratton,et al.  Biosensor Förster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy , 2012, Microscopy research and technique.

[30]  J Justin Gooding,et al.  Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. , 2014, Chemical Society reviews.

[31]  Chunhai Fan,et al.  Silicon nanostructures for bioapplications , 2010 .

[32]  J. Veinot,et al.  Silicon nanocrystals for the development of sensing platforms , 2016 .

[33]  Meng Zhou,et al.  Silicon Nanoparticles with Surface Nitrogen: 90% Quantum Yield with Narrow Luminescence Bandwidth and the Ligand Structure Based Energy Law. , 2016, ACS nano.

[34]  Susan M. Kauzlarich,et al.  Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. , 2013, ACS nano.

[35]  Astrid Magenau,et al.  Versatile "click chemistry" approach to functionalizing silicon quantum dots: applications toward fluorescent cellular imaging. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[36]  Xiaoyuan Ji,et al.  Highly Fluorescent, Photostable, and Ultrasmall Silicon Drug Nanocarriers for Long‐Term Tumor Cell Tracking and In‐Vivo Cancer Therapy , 2015, Advanced materials.

[37]  Mark T Swihart,et al.  Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots. , 2012, Nanoscale.

[38]  Akiyoshi Hoshino,et al.  Water-soluble photoluminescent silicon quantum dots. , 2005, Angewandte Chemie.

[39]  M. Dasog,et al.  Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. , 2014, ACS nano.

[40]  Gang Bao,et al.  Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. , 2012, ACS nano.

[41]  Li Zhang,et al.  Visualizing coherent intermolecular dipole–dipole coupling in real space , 2016, Nature.

[42]  Mark T. Swihart,et al.  Luminescent Colloidal Dispersion of Silicon Quantum Dots from Microwave Plasma Synthesis: Exploring the Photoluminescence Behavior Across the Visible Spectrum , 2009 .

[43]  Gang-yu Liu,et al.  Room temperature solution synthesis of alkyl-capped tetrahedral shaped silicon nanocrystals. , 2002, Journal of the American Chemical Society.

[44]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[45]  Paul F. Barbara,et al.  Size Tunable Visible Luminescence from Individual Organic Monolayer Stabilized Silicon Nanocrystal Quantum Dots , 2002 .

[46]  Lei Wang,et al.  Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence , 2015, Light: Science & Applications.

[47]  Yao He,et al.  One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. , 2011, Journal of the American Chemical Society.

[48]  E. Gratton,et al.  Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue , 2011, Proceedings of the National Academy of Sciences.

[49]  Bernhard Rieger,et al.  Silicon Nanocrystals and Silicon-Polymer Hybrids: Synthesis, Surface Engineering, and Applications. , 2016, Angewandte Chemie.

[50]  Uwe R. Kortshagen,et al.  Silicon nanocrystals with ensemble quantum yields exceeding 60 , 2006 .

[51]  Nastassja A. Lewinski,et al.  Cytotoxicity of nanoparticles. , 2008, Small.

[52]  Igor L. Medintz,et al.  Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor—Acceptor Combinations , 2006 .

[53]  J. Veinot,et al.  Synthesis, Surface Functionalization, and Properties of Freestanding Silicon Nanocrystals , 2007 .

[54]  Robert Langer,et al.  Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. , 2007, Nano letters.

[55]  Kristopher A Kilian,et al.  Functionalization of acetylene-terminated monolayers on Si(100) surfaces: a click chemistry approach. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[56]  J. Kelly,et al.  Wavelength-Controlled Etching of Silicon Nanocrystals , 2012 .

[57]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[58]  Igor L. Medintz,et al.  Probing the kinetics of quantum dot-based proteolytic sensors , 2015, Analytical and Bioanalytical Chemistry.

[59]  Susan M. Kauzlarich,et al.  Synthesis of Alkyl-Terminated Silicon Nanoclusters by a Solution Route , 1999 .

[60]  Igor L. Medintz,et al.  Proteolytic activity at quantum dot-conjugates: kinetic analysis reveals enhanced enzyme activity and localized interfacial "hopping". , 2012, Nano letters.

[61]  Ken-Tye Yong,et al.  Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots. , 2008, Nano letters.

[62]  L. Ruizendaal,et al.  Biofunctional silicon nanoparticles by means of thiol-ene click chemistry. , 2011, Chemistry, an Asian journal.

[63]  J. Kelly,et al.  An investigation into near-UV hydrosilylation of freestanding silicon nanocrystals. , 2010, ACS nano.

[64]  M. Brown,et al.  A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[66]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[67]  Peter C Hauser,et al.  Peptic and tryptic digestion of peptides and proteins monitored by capillary electrophoresis with contactless conductivity detection. , 2009, Analytical biochemistry.

[68]  M. Dasog,et al.  Influence of Halides on the Optical Properties of Silicon Quantum Dots , 2015 .

[69]  Lina Carlini,et al.  Uptake and processing of semiconductor quantum dots in living cells studied by fluorescence lifetime imaging microscopy (FLIM). , 2013, Chemical communications.

[70]  Uwe R. Kortshagen,et al.  Plasma‐Assisted Synthesis of Silicon Nanocrystal Inks , 2007 .

[71]  Jian Chang,et al.  Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. , 2013, Journal of the American Chemical Society.

[72]  M. Fleischauer,et al.  Size-dependent reactivity in hydrosilylation of silicon nanocrystals. , 2011, Journal of the American Chemical Society.