The "fish-specific" Hox cluster duplication is coincident with the origin of teleosts.

The Hox gene complement of zebrafish, medaka, and fugu differs from that of other gnathostome vertebrates. These fishes have seven to eight Hox clusters compared to the four Hox clusters described in sarcopterygians and shark. The clusters in different teleost lineages are orthologous, implying that a "fish-specific" Hox cluster duplication has occurred in the stem lineage leading to the most recent common ancestor of zebrafish and fugu. The timing of this event, however, is unknown. To address this question, we sequenced four Hox genes from taxa representing basal actinopterygian and teleost lineages and compared them to known sequences from shark, coelacanth, zebrafish, and other teleosts. The resulting gene genealogies suggest that the fish-specific Hox cluster duplication occurred coincident with the origin of crown group teleosts. In addition, we obtained evidence for an independent Hox cluster duplication in the sturgeon lineage (Acipenseriformes). Finally, results from HoxA11 suggest that duplicated Hox genes have experienced diversifying selection immediately after the duplication event. Taken together, these results support the notion that the duplicated Hox genes of teleosts were causally relevant to adaptive evolution during the initial teleost radiation.

[1]  Sonja J. Prohaska,et al.  The duplication of the Hox gene clusters in teleost fishes , 2004, Theory in Biosciences.

[2]  Philip C J Donoghue,et al.  Genome duplication, extinction and vertebrate evolution. , 2005, Trends in ecology & evolution.

[3]  G. Wagner,et al.  Expression of Hoxa‐11 and Hoxa‐13 in the pectoral fin of a basal ray‐finned fish, Polyodon spathula: implications for the origin of tetrapod limbs , 2005, Evolution & development.

[4]  Sergei L. Kosakovsky Pond,et al.  HyPhy: hypothesis testing using phylogenies , 2005, Bioinform..

[5]  Sonja J. Prohaska,et al.  Molecular Evolution of Duplicated Ray Finned Fish HoxA Clusters: Increased Synonymous Substitution Rate and Asymmetrical Co-divergence of Coding and Non-coding Sequences , 2005, Journal of Molecular Evolution.

[6]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[7]  Sonja J. Prohaska,et al.  Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii. , 2004, Molecular phylogenetics and evolution.

[8]  A. Meyer,et al.  Phylogenetic Timing of the Fish-Specific Genome Duplication Correlates with the Diversification of Teleost Fish , 2004, Journal of Molecular Evolution.

[9]  Sonja J. Prohaska,et al.  Surveying phylogenetic footprints in large gene clusters: applications to Hox cluster duplications. , 2004, Molecular phylogenetics and evolution.

[10]  Sonja J. Prohaska,et al.  Exclusion of repetitive DNA elements from gnathostome Hox clusters. , 2004, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[11]  V. Laudet,et al.  Phylogenetic dating and characterization of gene duplications in vertebrates: the cartilaginous fish reference. , 2004, Molecular biology and evolution.

[12]  Klaas Vandepoele,et al.  Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Angel Amores,et al.  Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. , 2003, Genome research.

[14]  Sonja J. Prohaska,et al.  Bichir HoxA cluster sequence reveals surprising trends in ray-finned fish genomic evolution. , 2003, Genome research.

[15]  T. Tiersch,et al.  Differential genome duplication and fish diversity , 2002, Reviews in Fish Biology and Fisheries.

[16]  V. Moulton,et al.  Neighbor-net: an agglomerative method for the construction of phylogenetic networks. , 2002, Molecular biology and evolution.

[17]  L. Grande,et al.  An overview of Acipenseriformes , 1997, Environmental Biology of Fishes.

[18]  G. Barlow,et al.  Fishes of the world , 2004, Environmental Biology of Fishes.

[19]  H. A. Orr,et al.  Speciation genes. , 2004, Current opinion in genetics & development.

[20]  T. Dobzhansky,et al.  Studies on hybrid sterility , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[21]  A. Meyer,et al.  Are all fishes ancient polyploids? , 2004, Journal of Structural and Functional Genomics.

[22]  Kazutaka Katoh,et al.  Basal jawed vertebrate phylogeny inferred from multiple nuclear DNA-coded genes , 2004, BMC Biology.

[23]  Ignacio Marín,et al.  Selection on coding regions determined Hox7 genes evolution. , 2003, Molecular biology and evolution.

[24]  G. Wagner,et al.  Hox cluster duplications and the opportunity for evolutionary novelties , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Wagner,et al.  Asymmetric sequence divergence of duplicate genes. , 2003, Genome research.

[26]  J. Volff,et al.  Functional divergence of two zebrafish midkine growth factors following fish-specific gene duplication. , 2003, Genome research.

[27]  Sudhir Kumar,et al.  Genomic clocks and evolutionary timescales. , 2003, Trends in genetics : TIG.

[28]  J. Quattro,et al.  Evolution of the Vertebrate Cytosolic Malate Dehydrogenase Gene Family: Duplication and Divergence in Actinopterygian Fish , 2003, Journal of Molecular Evolution.

[29]  A. Meyer,et al.  Genome duplication, a trait shared by 22000 species of ray-finned fish. , 2003, Genome research.

[30]  Ronald W. Davis,et al.  Role of duplicate genes in genetic robustness against null mutations , 2003, Nature.

[31]  Katsumi Tsukamoto,et al.  Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the "ancient fish". , 2003, Molecular phylogenetics and evolution.

[32]  C. Amemiya,et al.  Genomics of the HOX gene cluster. , 2002, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[33]  P. Holland,et al.  Were vertebrates octoploid? , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[34]  Ken Dewar,et al.  Molecular evolution of the HoxA cluster in the three major gnathostome lineages , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Sin‐Che Lee,et al.  Phosphoglucose isomerases of hagfish, zebrafish, gray mullet, toad, and snake, with reference to the evolution of the genes in vertebrates. , 2002, Molecular biology and evolution.

[36]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[37]  E. Koonin,et al.  Selection in the evolution of gene duplications , 2002, Genome Biology.

[38]  Y Van de Peer,et al.  Comparative genomics provides evidence for an ancient genome duplication event in fish. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  J. Quattro,et al.  Evidence for a period of directional selection following gene duplication in a neurally expressed locus of triosephosphate isomerase. , 2001, Genetics.

[40]  A. Meyer,et al.  The Ghost of Selection Past: Rates of Evolution and Functional Divergence of Anciently Duplicated Genes , 2001, Journal of Molecular Evolution.

[41]  J. Lister,et al.  Duplicate mitf genes in zebrafish: complementary expression and conservation of melanogenic potential. , 2001, Developmental biology.

[42]  S. Brenner,et al.  Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[43]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[44]  A. von Haeseler,et al.  Quartet-mapping, a generalization of the likelihood-mapping procedure. , 2001, Molecular biology and evolution.

[45]  Y Van de Peer,et al.  Genome duplication, divergent resolution and speciation. , 2001, Trends in genetics : TIG.

[46]  A. Meyer,et al.  Genome duplications and accelerated evolution of Hox genes and cluster architecture in teleost fishes , 2001 .

[47]  V. Laudet,et al.  Euteleost fish genomes are characterized by expansion of gene families. , 2001, Genome research.

[48]  A. Wagner,et al.  Birth and death of duplicated genes in completely sequenced eukaryotes. , 2001, Trends in genetics : TIG.

[49]  R. Ho,et al.  Additional hox clusters in the zebrafish: divergent expression patterns belie equivalent activities of duplicate hoxB5 genes , 2001, Evolution & development.

[50]  Y. Yan,et al.  Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. , 2001, Developmental biology.

[51]  Michael Lynch,et al.  The Origin of Interspecific Genomic Incompatibility via Gene Duplication , 2000, The American Naturalist.

[52]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[53]  R. DeSalle,et al.  Adaptive Evolution of Genes and Genomes , 2000, Heredity.

[54]  M. Kondo,et al.  A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. , 2000, Genetics.

[55]  A. Meyer,et al.  Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. , 1999, Current opinion in cell biology.

[56]  S. Ohno,et al.  Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999. , 1999, Seminars in cell & developmental biology.

[57]  A. Force,et al.  Preservation of duplicate genes by complementary, degenerative mutations. , 1999, Genetics.

[58]  A. Force,et al.  The zebrafish genome. , 1999, Methods in cell biology.

[59]  B. Larget,et al.  Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of Phylogenetic Trees , 2000 .

[60]  Y L Wang,et al.  Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.

[61]  Joachim Wittbrodt,et al.  More genes in fish , 1998 .

[62]  Z. Yang,et al.  Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. , 1998, Molecular biology and evolution.

[63]  N. M. Brooke,et al.  A molecular timescale for vertebrate evolution , 1998, Nature.

[64]  Daniel H. Huson,et al.  SplitsTree: analyzing and visualizing evolutionary data , 1998, Bioinform..

[65]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[66]  M. Stiassny,et al.  Interrelationships of fishes , 1997 .

[67]  R. Britz,et al.  A single micropyle in the eggs of the most basal living actinopterygian fish, Polypterus (Actinopterygii, Polypteriformes) , 1997 .

[68]  W. Messier,et al.  Episodic adaptive evolution of primate lysozymes , 1997, Nature.

[69]  M. C. D. Pinna,et al.  Chapter 7 – Teleostean Monophyly , 1996 .

[70]  S. Carroll Homeotic genes and the evolution of arthropods and chordates , 1995, Nature.

[71]  H. A. Orr,et al.  The population genetics of speciation: the evolution of hybrid incompatibilities. , 1995, Genetics.

[72]  N. Goldman,et al.  A codon-based model of nucleotide substitution for protein-coding DNA sequences. , 1994, Molecular biology and evolution.

[73]  Jordi Garcia-Fernàndez,et al.  Archetypal organization of the amphioxus Hox gene cluster , 1994, Nature.

[74]  F H Ruddle,et al.  Evolution of Hox genes. , 1994, Annual review of genetics.

[75]  A. Sidow,et al.  Gene duplications and the origins of vertebrate development. , 1994, Development (Cambridge, England). Supplement.

[76]  J. Bull,et al.  An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis , 1993 .

[77]  P. Gruss,et al.  The Antennapedia-type homeobox genes have evolved from three precursors separated early in metazoan evolution. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Rainer Fuchs,et al.  CLUSTAL V: improved software for multiple sequence alignment , 1992, Comput. Appl. Biosci..

[79]  S. Hedges The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. , 1992, Molecular biology and evolution.

[80]  William McGinnis,et al.  Homeobox genes and axial patterning , 1992, Cell.

[81]  M. Windham,et al.  A Model for Divergent, Allopatric Speciation of Polyploid Pteridophytes Resulting from Silencing of Duplicate-Gene Expression , 1991, The American Naturalist.

[82]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[83]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[84]  P. Olsen The skull and pectoral girdle of the parasemionotid fish Watsonulus eugnathoides from the Early Triassic Sakamena Group of Madagascar, with comments on the relationships of the holostean fishes , 1984 .

[85]  E. Wiley,et al.  The Neopterygian Amia as a Living Fossil , 1984 .

[86]  E. Wiley,et al.  Family Lepisosteida (Gars) as Living Fossils , 1984 .

[87]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[88]  G. Nelson Gill arches and the phylogeny of fishes : with notes on the classification of vertebrates. Bulletin of the AMNH ; v. 141, article 4 , 1969 .

[89]  T. Dobzhansky STUDIES ON HYBRID STERILITY. 11. LOCALIZATION OF STERILITY FACTORS I N DROSOPHILA PSEUDOOBSCURA HYBRIDS , 2003 .