Interactive knee cartilage extraction using efficient segmentation software: data from the osteoarthritis initiative.

In medical image segmentation, manual segmentation is considered both labor- and time-intensive while automated segmentation often fails to segment anatomically intricate structure accordingly. Interactive segmentation can tackle shortcomings reported by previous segmentation approaches through user intervention. To better reflect user intention, development of suitable editing functions is critical. In this paper, we propose an interactive knee cartilage extraction software that covers three important features: intuitiveness, speed, and convenience. The segmentation is performed using multi-label random walks algorithm. Our segmentation software is simple to use, intuitive to normal and osteoarthritic image segmentation and efficient using only two third of manual segmentation's time. Future works will extend this software to three dimensional segmentation and quantitative analysis.

[1]  Zhou Su,et al.  Interactive cell segmentation based on phase contrast optics. , 2014, Bio-medical materials and engineering.

[2]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Li Wenna,et al.  Improved random walker interactive image segmentation algorithm for texture image segmentation , 2011, 2011 Chinese Control and Decision Conference (CCDC).

[4]  Yan Kang,et al.  Interactive 3D editing tools for image segmentation , 2004, Medical Image Anal..

[5]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[6]  Felix Eckstein,et al.  Quantification of bone marrow lesion volume and volume change using semi-automated segmentation: data from the osteoarthritis initiative , 2013, BMC Musculoskeletal Disorders.

[7]  F Eckstein,et al.  Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative , 2005, Annals of the rheumatic diseases.

[8]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  F Eckstein,et al.  Two year longitudinal change and test-retest-precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative. , 2007, Osteoarthritis and cartilage.

[10]  William A. Barrett,et al.  Interactive Segmentation with Intelligent Scissors , 1998, Graph. Model. Image Process..

[11]  Martin Englund,et al.  The role of biomechanics in the initiation and progression of OA of the knee. , 2010, Best practice & research. Clinical rheumatology.

[12]  K. Bae,et al.  Intra- and inter-observer reproducibility of volume measurement of knee cartilage segmented from the OAI MR image set using a novel semi-automated segmentation method. , 2009, Osteoarthritis and cartilage.

[13]  Ole Fogh Olsen,et al.  Segmenting Articular Cartilage Automatically Using a Voxel Classification Approach , 2007, IEEE Transactions on Medical Imaging.

[14]  F. Eckstein,et al.  Interobserver reproducibility of quantitative meniscus analysis using coronal multiplanar DESS and IWTSE MR imaging , 2012, Magnetic resonance in medicine.

[15]  J Duryea,et al.  Novel fast semi-automated software to segment cartilage for knee MR acquisitions. , 2007, Osteoarthritis and cartilage.

[16]  Tan Tian Swee,et al.  Medical Image Visual Appearance Improvement Using Bihistogram Bezier Curve Contrast Enhancement: Data from the Osteoarthritis Initiative , 2014, TheScientificWorldJournal.

[17]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[18]  Mohammed Rafiq Abdul Kadir,et al.  Medical image contrast enhancement using spline concept: data from the osteoarthritis initiative , 2014 .

[19]  José G. Tamez-Peña,et al.  Unsupervised Segmentation and Quantification of Anatomical Knee Features: Data From the Osteoarthritis Initiative , 2012, IEEE Transactions on Biomedical Engineering.

[20]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[21]  Hui Kong,et al.  Cytoplasm segmentation on cervical cell images using graph cut-based approach. , 2014, Bio-medical materials and engineering.

[22]  Stuart Crozier,et al.  Automatic Segmentation of Articular Cartilage in Magnetic Resonance Images of the Knee , 2007, MICCAI.

[23]  F Eckstein,et al.  Sensitivity to change of cartilage morphometry using coronal FLASH, sagittal DESS, and coronal MPR DESS protocols--comparative data from the Osteoarthritis Initiative (OAI). , 2010, Osteoarthritis and cartilage.

[24]  C. Kwoh,et al.  Knee cartilage: efficient and reproducible segmentation on high-spatial-resolution MR images with the semiautomated graph-cut algorithm method. , 2009, Radiology.

[25]  Jurgen Fripp,et al.  On the Use of Coupled Shape Priors for Segmentation of Magnetic Resonance Images of the Knee , 2015, IEEE Journal of Biomedical and Health Informatics.

[26]  Heung-Yeung Shum,et al.  Paint selection , 2009, SIGGRAPH 2009.

[27]  Ole Fogh Olsen,et al.  Automatic Segmentation of the Articular Cartilage in Knee MRI Using a Hierarchical Multi-class Classification Scheme , 2005, MICCAI.

[28]  Jianfei Cai,et al.  Robust Interactive Image Segmentation Using Convex Active Contours , 2012, IEEE Transactions on Image Processing.

[29]  Leo Grady,et al.  Multilabel random walker image segmentation using prior models , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[30]  Stuart Crozier,et al.  Automatic Segmentation and Quantitative Analysis of the Articular Cartilages From Magnetic Resonance Images of the Knee , 2010, IEEE Transactions on Medical Imaging.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Arnold W. M. Smeulders,et al.  Setting the Mind for Intelligent Interactive Segmentation: Overview, Requirements, and Framework , 1997, IPMI.

[33]  Marie-Pierre Jolly,et al.  Interactive Organ Segmentation Using Graph Cuts , 2000, MICCAI.

[34]  Erika Schneider,et al.  The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. , 2008, Osteoarthritis and cartilage.