Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using Lagrange’s identity and wedge product

Concurrence, introduced by Hill and Wootters (Phys Rev Lett 78:5022, 1997), provides an important measure of entanglement for a general pair of qubits that is faithful: strictly positive for entangled states and vanishing for all separable states. Such a measure captures the entire content of entanglement, providing necessary and sufficient conditions for separability. We present an extension of concurrence to multiparticle pure states in arbitrary dimensions by a new framework using the Lagrange’s identity and wedge product representation of separability conditions, which coincides with the “I-concurrence” of Rungta et al. (Phys Rev A 64:042315, 2001) who proposed by extending Wootters’s spin-flip operator to a so-called universal inverter superoperator. Our framework exposes an inherent geometry of entanglement and may be useful for the further extensions to mixed and continuous variable states.

[1]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[2]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[3]  Mark Van Raamsdonk Building up spacetime with quantum entanglement , 2010 .

[4]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[5]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[6]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[7]  S. Stepney,et al.  Searching for highly entangled multi-qubit states , 2005 .

[8]  B. Zhang,et al.  Quantum Teleportation of an Arbitrary N-qubit State via GHZ-like States , 2016 .

[9]  L. Ahlfors,et al.  Complex Analysis Mcgraw Hill , 2014 .

[10]  Ron Cowen,et al.  The quantum source of space-time , 2015, Nature.

[11]  Marco Enríquez,et al.  Maximally Entangled Multipartite States: A Brief Survey , 2016 .

[12]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[13]  Jing-Min Zhu Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States , 2016 .

[14]  C. Doran,et al.  Geometric Algebra for Physicists , 2003 .

[15]  M. Marcus,et al.  Introduction to linear algebra , 1966 .

[16]  Song-Ya Ma,et al.  Controlled Remote Preparation Via the Brown State with no Restriction , 2016 .

[17]  P. Panigrahi,et al.  Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state , 2007, 0708.3785.

[18]  A. Sawicki,et al.  Symplectic Geometry of Entanglement , 2010, 1007.1844.

[19]  J. Stillwell Mathematics and Its History , 2020, Undergraduate Texts in Mathematics.

[20]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[21]  Xiaoqian Zhang,et al.  Perfect quantum teleportation by four-particle cluster state , 2016, Inf. Process. Lett..

[22]  A. Plastino,et al.  Multiqubit systems: highly entangled states and entanglement distribution , 2007, 0803.3979.

[23]  A. Sudbery,et al.  How entangled can two couples get , 2000, quant-ph/0005013.

[24]  G. Milburn,et al.  Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.

[25]  Oliver Knill,et al.  Cauchy-Binet for Pseudo-Determinants , 2013, 1306.0062.

[26]  Bo Zhao,et al.  Experimental quantum teleportation of a two-qubit composite system , 2006, quant-ph/0609129.

[27]  L. Ahlfors Complex Analysis , 1979 .