Controller synthesis for bisimulation equivalence

The objective of this paper is to solve the controller synthesis problem for bisimulation equivalence in a wide variety of scenarios including discrete-event systems, nonlinear control systems, behavioral systems, hybrid systems and many others. This will be accomplished by showing that the arguments underlying proofs of existence and methods for the construction of controllers are extraneous to the particular class of systems being considered and thus can be presented in greater generality.

[1]  P. Ramadge,et al.  Supervisory control of a class of discrete event processes , 1987 .

[2]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[3]  Jana Kosecka,et al.  Control of Discrete Event Systems , 1992 .

[4]  Ratnesh Kumar,et al.  Control of nondeterministic discrete-event systems for bisimulation equivalence , 2007, IEEE Transactions on Automatic Control.

[5]  Thomas A. Henzinger,et al.  Alternating Refinement Relations , 1998, CONCUR.

[6]  Thomas A. Henzinger,et al.  Computing simulations on finite and infinite graphs , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[7]  Bard Bloom,et al.  Transformational Design and Implementation of a New Efficient Solution to the Ready Simulation Problem , 1995, Sci. Comput. Program..

[8]  Arjan van der Schaft,et al.  Equivalence of dynamical systems by bisimulation , 2004, IEEE Trans. Autom. Control..

[9]  Paulo Tabuada,et al.  Quotients of Fully Nonlinear Control Systems , 2005, SIAM J. Control. Optim..

[10]  Paulo Tabuada Open Maps, Alternating Simulations and Control Synthesis , 2004, CONCUR.

[11]  Benoît Caillaud,et al.  Modular System Development with Pullbacks , 2003, ICATPN.

[12]  P. S. Thiagarajan,et al.  Branching time controllers for discrete event systems , 2002, Theor. Comput. Sci..

[13]  Christos G. Cassandras,et al.  Introduction to Discrete Event Systems , 1999, The Kluwer International Series on Discrete Event Dynamic Systems.

[14]  Zhiwu Li,et al.  ON SUPERVISORY CONTROL OF A CLASS OF DISCRETE EVENT SYSTEMS , 2006 .

[15]  Mogens Nielsen,et al.  Models for Concurrency , 1992 .

[16]  A. J. van der Schaft,et al.  Equivalence of switching linear systems by bisimulation , 2006 .

[17]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .

[18]  A. J. van der Schaft,et al.  Equivalence of dynamical systems by bisimulation , 2004, IEEE Transactions on Automatic Control.

[19]  S. Shankar Sastry,et al.  Homogeneous semantics preserving deployments of heterogeneous networks of embedded systems , 2006 .

[20]  Arjan van der Schaft,et al.  Achievable behavior of general systems , 2003, Syst. Control. Lett..

[21]  S. Shankar Sastry,et al.  Hierarchically consistent control systems , 2000, IEEE Trans. Autom. Control..

[22]  V. I. Elkin Affine control systems: Their equivalence, classification, quotient systems, and subsystems , 1998 .

[23]  Vijay K. Garg,et al.  Modeling and Control of Logical Discrete Event Systems , 1994 .

[24]  Jan C. Willems,et al.  Introduction to Mathematical Systems Theory. A Behavioral , 2002 .

[25]  Paulo Tabuada,et al.  On Simulations and Bisimulations of General Flow Systems , 2007, HSCC.

[26]  Stephan Merz,et al.  Model Checking , 2000 .

[27]  Glynn Winskel,et al.  Bisimulation from Open Maps , 1994, Inf. Comput..

[28]  Paulo Tabuada,et al.  Bisimilar control affine systems , 2004, Syst. Control. Lett..

[29]  Kevin A. Grasse,et al.  Simulation and Bisimulation of Nonlinear Control Systems with Admissible Classes of Inputs and Disturbances , 2007, SIAM J. Control. Optim..

[30]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[31]  Paulo Tabuada,et al.  Bisimulation relations for dynamical, control, and hybrid systems , 2005, Theor. Comput. Sci..