The variation of mass ablation rate with laser wavelength and target geometry

[1]  R. Sigel,et al.  Observation of Laser-Driven Shock Waves in Solid Hydrogen , 1974 .

[2]  M. Michaelis,et al.  Laser induced acceleration of metal foils , 1975 .

[3]  Barukh Yaakobi,et al.  Measurement of Reduced Thermal Conduction in (Layered) Laser-Target Experiments , 1977 .

[4]  H. T. King,et al.  Evidence for Surface-Interaction Effects via a Nuclear Hyperfine-Interaction Experiment , 1977 .

[5]  L. R. Veeser,et al.  Studies of Laser-Driven Shock Waves in Aluminum , 1978 .

[6]  Ablative acceleration of laser-irradiated thin-foil targets , 1979 .

[7]  J. W. Shaner,et al.  Ultrahigh-Pressure Laser-Driven Shock-Wave Experiments in Aluminum , 1979 .

[8]  J. Kilkenny,et al.  The X-ray spectroscopic diagnosis of laser-produced plasmas, with emphasis on line broadening , 1980 .

[9]  Ciaran Lewis,et al.  TIME-RESOLVED X-RAY SPECTROSCOPY OF LASER-PRODUCED PLASMAS , 1980 .

[10]  W. Mead,et al.  A model for laser driven ablative implosions , 1980 .

[11]  S. Jackel,et al.  Effect of pulse duration and polarization on momentum and energy transfer to laser-irradiated targets , 1980 .

[12]  C. Reason,et al.  Vulcan - A versatile high-power glass laser for multiuser experiments , 1981, IEEE Journal of Quantum Electronics.

[13]  G. L. Stradling,et al.  Laser-Plasma Interactions at 0.53 μm for Disk Targets of VaryingZ , 1981 .

[14]  B. Ripin,et al.  Characteristics of ablation plasma from planar, laser‐driven targets , 1981 .

[15]  J. Kilkenny,et al.  Determination of mass ablation rates and ablation pressures on spherical targets by ion emission , 1981 .