Anisotropic Multicenter Bonding and High Thermoelectric Performance in Electron-Poor CdSb

Long-standing challenges to simultaneously accomplish crystal-like electrical transport and glass-like thermal transport in materials hinder the development of thermoelectric energy conversion technologies. We show that the unusual combination of these transport properties can be realized in electron-poor II–V semiconductor CdSb. Anisotropic multicenter bonding in CdSb is essential to both electrical and thermal transport. The electron-deficiency-sharing multicenter interactions lead to low overall ionicity and hence relatively high carrier weighted mobility and power factor. The bond anisotropy causes large lattice anharmonicity, which coupled with low cutoff frequency of the longitudinal acoustic branch and low sound velocity, gives rise to intrinsically low lattice thermal conductivity, approaching the glass-limit at elevated temperatures. A maximum thermoelectric figure of merit ZT of ∼1.3 at 560 K and an average ZT of 1.0 between 300 K and 600 K are achieved for the 0.5 at. % Ag-doped sample, which m...

[1]  Y. Grin Crystal Structure and Bonding in Intermetallic Compounds , 2019, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering.

[2]  A. Srivastava,et al.  Thermoelectric properties of Cu3SbSe3 with intrinsically ultralow lattice thermal conductivity , 2014 .

[3]  U. Waghmare,et al.  Temperature dependent reversible p-n-p type conduction switching with colossal change in thermopower of semiconducting AgCuS. , 2014, Journal of the American Chemical Society.

[4]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[5]  Tiejun Zhu,et al.  Shifting up the optimum figure of merit of p -type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction , 2014 .

[6]  G. Madsen,et al.  Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3 , 2014 .

[7]  Peihong Zhang,et al.  Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U. , 2013, The Journal of chemical physics.

[8]  Y. Grin,et al.  Position‐Space Bonding Indicators for Hexaborides of Alkali, Alkaline‐Earth, and Rare‐Earth Metals in Comparison to the Molecular Crystal K2[B6H6] , 2013 .

[9]  D. Negi,et al.  High thermoelectric performance in tellurium free p-type AgSbSe2 , 2013 .

[10]  V. Ozoliņš,et al.  Lone pair electrons minimize lattice thermal conductivity , 2013 .

[11]  K. Biswas,et al.  Cation Disorder and Bond Anharmonicity Optimize the Thermoelectric Properties in Kinetically Stabilized Rocksalt AgBiS2 Nanocrystals , 2013 .

[12]  Vladimir A. Volodin,et al.  Vibrations in binary and ternary topological insulators: First-principles calculations and Raman spectroscopy measurements , 2012 .

[13]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[14]  Han Li,et al.  Enhanced thermoelectric properties of Bi2(Te1−xSex)3-based compounds as n-type legs for low-temperature power generation , 2012 .

[15]  G. J. Snyder,et al.  Thermopower enhancement in Pb1−xMnxTe alloys and its effect on thermoelectric efficiency , 2012 .

[16]  Shanyu Wang,et al.  The realization of a high thermoelectric figure of merit in Ge-substituted β-Zn4Sb3 through band structure modification , 2012 .

[17]  Qian Zhang,et al.  Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe(1-y)Se(y). , 2012, Journal of the American Chemical Society.

[18]  G. Madsen,et al.  Ab initio Calculations of Intrinsic Point Defects in ZnSb , 2012 .

[19]  Jivtesh Garg,et al.  Minimum thermal conductivity in superlattices: A first-principles formalism , 2012 .

[20]  V. Ozoliņš,et al.  First-principles description of anomalously low lattice thermal conductivity in thermoelectric Cu-Sb-Se ternary semiconductors , 2012 .

[21]  Yong Liu,et al.  Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS , 2012, Journal of Alloys and Compounds.

[22]  T. Finstad,et al.  Thermoelectric properties of Cu doped ZnSb containing Zn3P2 particles , 2012 .

[23]  Y. Grin,et al.  Chemical Bonding in Al5Co2: The Electron Localizability-Electron Density Approach , 2011 .

[24]  D. Morelli,et al.  Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. , 2011, Physical review letters.

[25]  Ctirad Uher,et al.  p-Type skutterudites RxMyFe3CoSb12 (R, M = Ba, Ce, Nd, and Yb): Effectiveness of double-filling for the lattice thermal conductivity reduction , 2011 .

[26]  Electronic structure and chemical bonding of the electron-poor II-V semiconductors ZnSb and ZnAs , 2011 .

[27]  Ctirad Uher,et al.  High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. , 2011, Journal of the American Chemical Society.

[28]  G. J. Snyder,et al.  High thermoelectric figure of merit in heavy hole dominated PbTe , 2011 .

[29]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[30]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[31]  David J. Singh,et al.  Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.

[32]  M. Schmidt,et al.  Atomic interactions in the p-type clathrate I Ba8Au5.3Ge40.7. , 2011, Inorganic chemistry.

[33]  Bo Qiu,et al.  Lattice thermal conductivity reduction in Bi2Te3 quantum wires with smooth and rough surfaces: A molecular dynamics study , 2011 .

[34]  P. Kent,et al.  Anomalous lattice dynamics near the ferroelectric instability in PbTe. , 2011, Physical review letters.

[35]  H. W. Lee,et al.  Control of thermoelectric properties through the addition of Ag in the Bi0.5Sb1.5Te3Alloy , 2010 .

[36]  Terry M. Tritt,et al.  Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. , 2010, Nano letters.

[37]  X. Zhao,et al.  Improved thermoelectric properties of AgSbTe2 based compounds with nanoscale Ag2Te in situ precipitates , 2010 .

[38]  U. Häussermann,et al.  Electron-poor antimonides: complex framework structures with narrow band gaps and low thermal conductivity. , 2010, Dalton transactions.

[39]  H. Borrmann,et al.  Atomic ordering and thermoelectric properties of the n-type clathrate Ba8Ni3.5Ge42.1square0.4. , 2010, Dalton transactions.

[40]  X. Su,et al.  Synthesis and thermoelectric properties of p-type Zn-doped ZnxIn1−xSb compounds , 2010 .

[41]  G. Kotliar,et al.  Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals , 2009, Nature.

[42]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[43]  Jihui Yang,et al.  Evaluation of Half‐Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties , 2008 .

[44]  D. Morelli,et al.  Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. , 2008, Physical review letters.

[45]  J. Heremans,et al.  Measurements of the energy band gap and valence band structure of AgSbTe 2 , 2008 .

[46]  Baoling Huang,et al.  Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride , 2008 .

[47]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[48]  Y. Grin,et al.  Charge decomposition analysis of the electron localizability indicator: a bridge between the orbital and direct space representation of the chemical bond. , 2007, Chemistry.

[49]  G. J. Snyder,et al.  Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation , 2006 .

[50]  Jun Jiang,et al.  Fabrication and thermoelectric performance of textured n-type Bi2(Te,Se)3 by spark plasma sintering , 2005 .

[51]  Miroslav Kohout,et al.  A Measure of Electron Localizability , 2004 .

[52]  A. Ashcheulov,et al.  Cadmium Antimonide: Chemical Bonding and Technology , 2003 .

[53]  Donald T. Morelli,et al.  Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors , 2002 .

[54]  H. Goldsmid,et al.  Estimation of the thermal band gap of a semiconductor from seebeck measurements , 1999 .

[55]  Helmut Eschrig,et al.  FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .

[56]  G. A. Slack,et al.  Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors , 1998, cond-mat/9812387.

[57]  Jean-Pierre Fleurial,et al.  Preparation and thermoelectric properties of semiconducting Zn4Sb3 , 1997 .

[58]  Y. Tsuchiya Molar Volume and Compressibility of the Liquid Cd–Sb System , 1996 .

[59]  Andreas Savin,et al.  Topological analysis of the electron localization function applied to delocalized bonds , 1996 .

[60]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[61]  G. A. Slack,et al.  New Materials and Performance Limits for Thermoelectric Cooling , 1995 .

[62]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[63]  Moayyed A. Hussain,et al.  The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators , 1991 .

[64]  M. Cardona,et al.  Piezo-Raman measurements and anharmonic parameters in silicon and diamond. , 1990, Physical review. B, Condensed matter.

[65]  K. Range,et al.  Cadmium antimonide, CdSb , 1988 .

[66]  A. Simon Clusters of Valence Electron Poor Metals—Structure, Bonding, and Properties , 1988 .

[67]  W. F. Sherman Bond anharmonicities, Gruneisen parameters and pressure-induced frequency shifts , 1980 .

[68]  V. Shevchenko,et al.  Electrical properties of p‐CdSb at low temperatures , 1977 .

[69]  Herbert Schäfer,et al.  Zintl Phases: Transitions between Metallic and Ionic Bonding , 1973 .

[70]  G. A. Slack,et al.  Thermal Conductivity of II-VI Compounds and Phonon Scattering by Fe 2 + Impurities , 1972 .

[71]  W. Lehnefinke,et al.  Transport properties of p- and n-Cd1-x Znx at low temperatures (0 ≦ × ≦ 0.5) , 1971 .

[72]  H. Matsunami,et al.  Electrical Properties of Undoped p-CdSb at Low Temperatures , 1969 .

[73]  L. Štourač The thermoelectric efficiency of CdSb and solid solutions of ZnxCd1−xSb with hole conductivity , 1967 .

[74]  A. Hrubý,et al.  Electric and thermoelectric effects in a solid solution of ZnxCd1−xSb , 1967 .

[75]  D. Chung,et al.  The Voigt‐Reuss‐Hill Approximation and Elastic Moduli of Polycrystalline MgO, CaF2, β‐ZnS, ZnSe, and CdTe , 1967 .

[76]  J. Blair,et al.  Thermal and electronic transport properties of p-type ZnSb. , 1966 .

[77]  J. Tauc,et al.  Optical properties and band structure of CdSb , 1965 .

[78]  A. Hrubý,et al.  Electrical conductivity and thermoelectric power of heavily doped P-type CdSb , 1965 .

[79]  M. G. Holland Phonon Scattering in Semiconductors From Thermal Conductivity Studies , 1964 .

[80]  A. Hrubý,et al.  Electrical properties of CdSb single crystals doped with silver , 1964 .

[81]  G. A. Slack,et al.  Thermal Conductivity and Phonon Scattering by Magnetic Impurities in CdTe , 1964 .

[82]  B. Velicky,et al.  The chemical bond in CdSb , 1963 .

[83]  K. Toman Anisotropy of chemical bond in CdSb compound , 1963 .

[84]  A. Hrubý,et al.  The influence of impurities on the electric and thermoelectric properties of CdSb single crystals , 1963 .

[85]  W. Klemm,et al.  Volumeninkremente und Radien einiger einfach negativ gelandener Ionen , 1963 .

[86]  F. Ermanis,et al.  The Semiconducting Properties of CdSb , 1961 .

[87]  A. Fischler,et al.  Electrical and Optical Properties of the II–V Compounds , 1961 .

[88]  A. Allred,et al.  Electronegativity values from thermochemical data , 1961 .

[89]  A. Fischler,et al.  Physical Properties of Several II-V Semiconductors , 1961 .

[90]  W. B. Pearson,et al.  Chemical Bond in Semiconductors , 1956 .

[91]  E. Conwell,et al.  Electrical Properties of N -Type Germanium , 1954 .