Fréchet Distance for Curves, Revisited

We revisit the problem of computing the Frechet distance between polygonal curves, focusing on the discrete Frechet distance, where only distance between vertices is considered. We develop efficient approximation algorithms for two natural classes of curves: K-bounded curves and backbone curves, the latter of which are widely used to model molecular structures. We also propose a pseudo-output-sensitive algorithm for computing the discrete Frechet distance exactly. The complexity of the algorithm is a function of the complexity of the free-space boundary, which is quadratic in the worst case, but tends to be lower in practice.

[1]  Christos H. Papadimitriou,et al.  Algorithmic aspects of protein structure similarity , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[2]  Helmut Alt,et al.  Comparison of Distance Measures for Planar Curves , 2003, Algorithmica.

[3]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[4]  Sang-Wook Kim,et al.  Optimization of subsequence matching under time warping in time-series databases , 2005, SAC '05.

[5]  Kim-Fung Man,et al.  Parallel Genetic-Based Hybrid Pattern Matching Algorithm for Isolated Word Recognition , 1998, Int. J. Pattern Recognit. Artif. Intell..

[6]  Leonidas J. Guibas,et al.  Fractional cascading: I. A data structuring technique , 1986, Algorithmica.

[7]  Dieter Pfoser,et al.  On Map-Matching Vehicle Tracking Data , 2005, VLDB.

[8]  J. Skolnick,et al.  Monte carlo simulations of protein folding. I. Lattice model and interaction scheme , 1994, Proteins.

[9]  Günter Rote Computing the Fréchet distance between piecewise smooth curves , 2007, Comput. Geom..

[10]  Sivan Toledo,et al.  Applications of parametric searching in geometric optimization , 1992, SODA '92.

[11]  Günter Rote,et al.  Matching planar maps , 2003, SODA '03.

[12]  Leonidas J. Guibas,et al.  New Similarity Measures between Polylines with Applications to Morphing and Polygon Sweeping , 2002, Discret. Comput. Geom..

[13]  H. Mannila,et al.  Computing Discrete Fréchet Distance ∗ , 1994 .

[14]  Helmut Alt,et al.  Matching Polygonal Curves with Respect to the Fréchet Distance , 2001, STACS.

[15]  Günter Rote Curves with increasing chords , 1994 .

[16]  Marc Parizeau,et al.  A Comparative Analysis of Regional Correlation, Dynamic Time Warping, and Skeletal Tree Matching for Signature Verification , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Kevin Buchin,et al.  Computing the Fréchet distance between simple polygons in polynomial time , 2006, SCG '06.

[18]  Piotr Indyk,et al.  Approximate nearest neighbor algorithms for Frechet distance via product metrics , 2002, SCG '02.

[19]  Carola Wenk,et al.  Shape matching in higher dimensions , 2003 .

[20]  Nabil H. Mustafa,et al.  Near-Linear Time Approximation Algorithms for Curve Simplification , 2005, Algorithmica.

[21]  Jeffrey S. Salowe L-Infinity Interdistance Selection by Parametric Search , 1989, Inf. Process. Lett..

[22]  Michael Clausen,et al.  Approximately matching polygonal curves with respect to the Fre'chet distance , 2005, Comput. Geom..

[23]  George S. Lueker,et al.  A data structure for orthogonal range queries , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[24]  Franz Aurenhammer,et al.  Generalized Self-Approaching Curves , 1998, ISAAC.

[25]  Maike Buchin,et al.  Semi-computability of the Fréchet distance between surfaces , 2005, EuroCG.

[26]  Leonidas J. Guibas,et al.  Morphing between polylines , 2001, SODA '01.

[27]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[28]  Eamonn J. Keogh,et al.  Scaling up Dynamic Time Warping to Massive Dataset , 1999, PKDD.