Can We Have Superconvergent Gradient Recovery Under Adaptive Meshes?

We study adaptive finite element methods for elliptic problems with domain corner singularities. Our model problem is the two-dimensional Poisson equation. Results of this paper are twofold. First, we prove that there exists an adaptive mesh (gauged by a discrete mesh density function) under which the recovered gradient by the polynomial preserving recovery (PPR) is superconvergent. Second, we demonstrate by numerical examples that an adaptive procedure with an a posteriori error estimator based on PPR does produce adaptive meshes that asatisfy our mesh density assumption, and the recovered gradient by PPR is indeed superconvergent in the adaptive process.

[1]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[2]  Zhimin Zhang,et al.  Ultraconvergence of ZZ patch recovery at mesh symmetry points , 2003, Numerische Mathematik.

[3]  Harold A. Buetow,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[4]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[5]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[6]  Bo Li,et al.  Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements , 1999 .

[7]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[8]  Andreas Veeser,et al.  A posteriori error estimators, gradient recovery by averaging, and superconvergence , 2006, Numerische Mathematik.

[9]  Ivo Marek,et al.  Superconvergence results on mildly structured triangulations , 2000 .

[10]  Zhimin Zhang,et al.  A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..

[11]  Zhimin Zhang POLYNOMIAL PRESERVING GRADIENT RECOVERY AND A POSTERIORI ESTIMATE FOR BILINEAR ELEMENT ON IRREGULAR QUADRILATERALS , 2004 .

[12]  Zhimin Zhang,et al.  Polynomial preserving recovery for anisotropic and irregular grids , 2004 .

[13]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[14]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[15]  Ningning Yan,et al.  Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes , 2001 .

[16]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[17]  Gabriel Wittum,et al.  Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..

[18]  Jinchao Xu,et al.  Superconvergence of quadratic finite elements on mildly structured grids , 2008, Math. Comput..

[19]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[20]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[21]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[22]  I Babuska,et al.  The p and h-p Versions of the Finite Element Method; State of the Art. , 1986 .

[23]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[24]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[25]  Randolph E. Bank,et al.  Hierarchical bases and the finite element method , 1996, Acta Numerica.

[26]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[27]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[28]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.