Can We Have Superconvergent Gradient Recovery Under Adaptive Meshes?
暂无分享,去创建一个
[1] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[2] Zhimin Zhang,et al. Ultraconvergence of ZZ patch recovery at mesh symmetry points , 2003, Numerische Mathematik.
[3] Harold A. Buetow,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[4] Zhimin Zhang,et al. Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..
[5] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[6] Bo Li,et al. Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements , 1999 .
[7] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[8] Andreas Veeser,et al. A posteriori error estimators, gradient recovery by averaging, and superconvergence , 2006, Numerische Mathematik.
[9] Ivo Marek,et al. Superconvergence results on mildly structured triangulations , 2000 .
[10] Zhimin Zhang,et al. A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..
[11] Zhimin Zhang. POLYNOMIAL PRESERVING GRADIENT RECOVERY AND A POSTERIORI ESTIMATE FOR BILINEAR ELEMENT ON IRREGULAR QUADRILATERALS , 2004 .
[12] Zhimin Zhang,et al. Polynomial preserving recovery for anisotropic and irregular grids , 2004 .
[13] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[14] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..
[15] Ningning Yan,et al. Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes , 2001 .
[16] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[17] Gabriel Wittum,et al. Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..
[18] Jinchao Xu,et al. Superconvergence of quadratic finite elements on mildly structured grids , 2008, Math. Comput..
[19] Jinchao Xu,et al. Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..
[20] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[21] P. Grisvard. Singularities in Boundary Value Problems , 1992 .
[22] I Babuska,et al. The p and h-p Versions of the Finite Element Method; State of the Art. , 1986 .
[23] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..
[24] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[25] Randolph E. Bank,et al. Hierarchical bases and the finite element method , 1996, Acta Numerica.
[26] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..
[27] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[28] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.