The heat equation on manifolds as a gradient flow in the Wasserstein space
暂无分享,去创建一个
[1] J. Dodziuk,et al. Maximum principle for parabolic inequalities and the heat flow on open manifolds , 1983 .
[2] I. Chavel. Riemannian Geometry: Subject Index , 2006 .
[3] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[4] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[5] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[6] R. McCann. Polar factorization of maps on Riemannian manifolds , 2001 .
[7] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[8] Karl-Theodor Sturm,et al. Convex functionals of probability measures and nonlinear diffusions on manifolds , 2005 .
[9] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces. II , 2006 .
[10] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces , 2006 .
[11] L. Ambrosio,et al. Chapter 1 – Gradient Flows of Probability Measures , 2007 .
[12] Giuseppe Savaré. Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds , 2007 .
[13] C. Villani. Optimal Transport: Old and New , 2008 .
[14] Young measures, superposition and transport , 2007, math/0701451.
[15] Shin-ichi Ohta,et al. Gradient flows on Wasserstein spaces over compact Alexandrov spaces , 2009 .