On weakly bounded noise in ill-posed problems

We study compact operator equations with noisy data in Hilbert space. Instead of assuming that the error in the data converges strongly to zero, we only assume a type of weak convergence. Under the source conditions that are usually assumed in the presence of convex constraints, we derive optimal convergence rates for convexly constrained Phillips–Tikhonov regularization. We also discuss a version of the Lepskii method for selecting the regularization parameter.

[1]  Andreas Neubauer,et al.  When do Sobolev spaces form a Hilbert scale , 1988 .

[2]  Sergei V. Pereverzyev,et al.  On the Adaptive Selection of the Parameter in Regularization of Ill-Posed Problems , 2005, SIAM J. Numer. Anal..

[3]  Bernard A. Mair,et al.  Statistical Inverse Estimation in Hilbert Scales , 1996, SIAM J. Appl. Math..

[4]  Jun Fang,et al.  Broadband Interference Suppression Performance of Minimum Redundancy Arrays , 2008, IEEE Transactions on Signal Processing.

[5]  A. Tikhonov On the stability of inverse problems , 1943 .

[6]  Alfred K. Louis,et al.  The instability of some gradient methods for ill-posed problems , 1990 .

[7]  Andreas Frommer,et al.  Fast CG-Based Methods for Tikhonov-Phillips Regularization , 1999, SIAM J. Sci. Comput..

[8]  A. Tsybakov,et al.  Oracle inequalities for inverse problems , 2002 .

[9]  Yu. I. Petunin,et al.  SCALES OF BANACH SPACES , 1966 .

[10]  S. Twomey,et al.  On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of the Linear System Produced by Quadrature , 1963, JACM.

[11]  G. Ribière Régularisation d'opérateurs , 1967 .

[12]  P. Mathé The Lepskii principle revisited , 2006 .

[13]  H. Gfrerer An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates , 1987 .

[14]  L. Brown,et al.  Asymptotic equivalence of nonparametric regression and white noise , 1996 .

[15]  M. Nashed,et al.  Tikhonov regularization of nonlinear ill-posed problems with closed operators in Hilbert scales , 1997 .

[16]  T. Hohage,et al.  Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise , 2008 .

[17]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[18]  Peter Mathé,et al.  Optimal Discretization of Inverse Problems in Hilbert Scales. Regularization and Self-Regularization of Projection Methods , 2000, SIAM J. Numer. Anal..

[19]  Andreas Neubauer,et al.  Tikhonov-regularization of ill-posed linear operator equations on closed convex sets , 1988 .

[20]  José María Carazo,et al.  Modeling experimental image formation for likelihood-based classification of electron microscopy data. , 2007, Structure.

[21]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[22]  P. Mathé,et al.  Geometry of linear ill-posed problems in variable Hilbert scales Inverse Problems 19 789-803 , 2003 .

[23]  Michel Loève,et al.  Probability Theory I , 1977 .

[24]  S. Osher,et al.  Convergence rates of convex variational regularization , 2004 .

[25]  Joel Franklin,et al.  Well-posed stochastic extensions of ill-posed linear problems☆ , 1970 .

[26]  O. Lepskii On a Problem of Adaptive Estimation in Gaussian White Noise , 1991 .

[27]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[28]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[29]  F. Natterer Error bounds for tikhonov regularization in hilbert scales , 1984 .

[30]  R. Bhatia Matrix Analysis , 1996 .

[31]  A. Tikhonov,et al.  Numerical Methods for the Solution of Ill-Posed Problems , 1995 .

[32]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[33]  T. Hohage,et al.  Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise , 2004 .

[34]  P. Maaß,et al.  Two-step regularization methods for linear inverse problems , 2006 .

[35]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[36]  Bertolt Eicke Iteration methods for convexly constrained ill-posed problems in hilbert space , 1992 .

[37]  Andreas Neubauer,et al.  On Converse and Saturation Results for Tikhonov Regularization of Linear Ill-Posed Problems , 1997 .

[38]  P. Eggermont,et al.  Equivalent Kernels for Smoothing Splines , 2006 .

[39]  Peter Mathé,et al.  The discretized discrepancy principle under general source conditions , 2006, J. Complex..

[40]  Peter Mathé,et al.  Regularization of some linear ill-posed problems with discretized random noisy data , 2006, Math. Comput..

[41]  L. Cavalier,et al.  Risk hull method and regularization by projections of ill-posed inverse problems , 2006, math/0611228.

[42]  Markus Hegland,et al.  Variable hilbert scales and their interpolation inequalities with applications to tikhonov regularization , 1995 .

[43]  Herbert Egger,et al.  Semi-iterative Regularization in Hilbert Scales , 2006, SIAM J. Numer. Anal..

[44]  M. Hanke Accelerated Landweber iterations for the solution of ill-posed equations , 1991 .

[45]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[46]  Catharina G. M. Oudshoorn,et al.  Asymptotically minimax estimation of a function with jumps , 1998 .

[47]  Nicolai Bissantz,et al.  Convergence Rates of General Regularization Methods for Statistical Inverse Problems and Applications , 2007, SIAM J. Numer. Anal..