Learning to accurately COUNT with query-driven predictive analytics
暂无分享,去创建一个
[1] Saso Dzeroski,et al. Learning model trees from evolving data streams , 2010, Data Mining and Knowledge Discovery.
[2] Luke J. Gosink. An Application of Multivariate Statistical Analysis for Query-Driven Visualization - eScholarship , 2010 .
[3] Dimitrios Gunopulos,et al. Selectivity estimators for multidimensional range queries over real attributes , 2005, The VLDB Journal.
[4] Peter J. Haas,et al. ISOMER: Consistent Histogram Construction Using Query Feedback , 2006, 22nd International Conference on Data Engineering (ICDE'06).
[5] Teuvo Kohonen,et al. Self-Organizing Maps , 2010 .
[6] Lipika Dey,et al. A k-mean clustering algorithm for mixed numeric and categorical data , 2007, Data Knowl. Eng..
[7] Koji Zettsu,et al. Dynamic pre-training of Deep Recurrent Neural Networks for predicting environmental monitoring data , 2014, 2014 IEEE International Conference on Big Data (Big Data).
[8] Atanas Atanasov,et al. Query-driven parallel exploration of large datasets , 2012, IEEE Symposium on Large Data Analysis and Visualization (LDAV).
[9] Yannis E. Ioannidis,et al. The History of Histograms (abridged) , 2003, VLDB.
[10] H. Robbins. A Stochastic Approximation Method , 1951 .
[11] Natasha Balac,et al. Large Scale predictive analytics for real-time energy management , 2013, 2013 IEEE International Conference on Big Data.
[12] Teuvo Kohonen,et al. Self-Organizing Maps, Third Edition , 2001, Springer Series in Information Sciences.
[13] Abon Chaudhuri,et al. Efficient Range Distribution Query for Visualizing Scientific Data , 2014, 2014 IEEE Pacific Visualization Symposium.
[14] Luis Gravano,et al. STHoles: a multidimensional workload-aware histogram , 2001, SIGMOD '01.
[15] Prateek Jain,et al. A Learning Framework for Self-Tuning Histograms , 2011, ArXiv.
[16] Peter J. Haas,et al. Sequential sampling procedures for query size estimation , 1992, SIGMOD '92.
[17] Yannis E. Ioannidis,et al. Selectivity Estimation Without the Attribute Value Independence Assumption , 1997, VLDB.
[18] Cheng-Hao Tsai,et al. Large-scale logistic regression and linear support vector machines using spark , 2014, 2014 IEEE International Conference on Big Data (Big Data).
[19] Michael J. Franklin,et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.
[20] Doron Rotem,et al. Random Sampling from Database Files: A Survey , 1990, SSDBM.
[21] Cyrus Shahabi,et al. Entropy-based histograms for selectivity estimation , 2013, CIKM.
[22] Deok-Hwan Kim,et al. Multi-dimensional selectivity estimation using compressed histogram information , 1999, SIGMOD '99.
[23] Léon Bottou,et al. The Tradeoffs of Large Scale Learning , 2007, NIPS.
[24] Christos Faloutsos,et al. The power-method: a comprehensive estimation technique for multi-dimensional queries , 2003, CIKM '03.
[25] Bart Kosko,et al. Stochastic competitive learning , 1990, 1990 IJCNN International Joint Conference on Neural Networks.
[26] James Theiler,et al. Accurate On-line Support Vector Regression , 2003, Neural Computation.
[27] Jeffrey Scott Vitter,et al. Data cube approximation and histograms via wavelets , 1998, CIKM '98.
[28] Surajit Chaudhuri,et al. Self-tuning histograms: building histograms without looking at data , 1999, SIGMOD '99.