Nonparametric Item Response Theory and Mokken Scale Analysis, with Relations to Latent Class Models and Cognitive Diagnostic Models

As the focus of this chapter, we discuss nonparametric item response theory for ordinal person scales, specifically the monotone homogeneity model and Mokken scale analysis, which is the data-analysis procedure used for investigating the compliance between the monotone homogeneity model and data. Next, we discuss the unrestricted latent class model as an even more liberal model for investigating the scalability of a set of items, producing nominal scales, but we also discuss an ordered latent class model that one can use to investigate assumptions about item response functions in the monotone homogeneity model and other nonparametric item response models. Finally, we discuss cognitive diagnostic models, which are the core of this volume, and which are a further deepening of latent class models, providing diagnostic information about the people who responded to a set of items. A data analysis example, using item scores of 1210 respondents on 44 items from the Millon Clinical Multiaxial Inventory III, demonstrates how the monotone homogeneity model, the latent class model, and two cognitive diagnostic models can be used jointly to understand one’s data.

[1]  Brian W. Junker,et al.  Stochastic ordering using the latent trait and the sum score in polytomous IRT models , 1997 .

[2]  van der Ark,et al.  Mokken Scale Analysis in R , 2007 .

[3]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[4]  F. Samejima Estimation of latent ability using a response pattern of graded scores , 1968 .

[5]  J. Templin,et al.  Measurement of psychological disorders using cognitive diagnosis models. , 2006, Psychological methods.

[6]  J. L. Ellis,et al.  An Inequality for Correlations in Unidimensional Monotone Latent Variable Models for Binary Variables , 2014, Psychometrika.

[7]  Klaas Sijtsma,et al.  Nonparametric polytomous IRT models for invariant item ordering, with results for parametric models , 1998 .

[8]  Jimmy de la Torre The Generalized DINA Model Framework , 2011 .

[9]  I. W. Molenaar,et al.  A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks , 1997 .

[10]  van der Ark,et al.  New Developments in Mokken Scale Analysis in R , 2012 .

[11]  Klaas Sijtsma,et al.  A tutorial on how to do a Mokken scale analysis on your test and questionnaire data. , 2017, The British journal of mathematical and statistical psychology.

[12]  Klaas Sijtsma,et al.  Using Conditional Association to Identify Locally Independent Item Sets , 2016 .

[13]  Rudy Ligtvoet,et al.  Latent class models for testing monotonicity and invariant item ordering for polytomous items. , 2012, The British journal of mathematical and statistical psychology.

[14]  J. Vermunt,et al.  9. Multiple Imputation of Incomplete Categorical Data Using Latent Class Analysis , 2008 .

[15]  Douglas M. Bates,et al.  Estimating the Multilevel Rasch Model: With the lme4 Package , 2007 .

[16]  T. Heinen,et al.  Latent Class and Discrete Latent Trait Models: Similarities and Differences , 1996 .

[17]  B. Junker Conditional association, essential independence and monotone unidimensional Item response models , 1993 .

[18]  James O. Ramsay,et al.  Functional Approaches to Modeling Response Data , 2016 .

[19]  Marcel A. Croon,et al.  Investigating Mokken scalability of dichotomous items by means of ordinal latent class analysis , 1991 .

[20]  J. Vermunt,et al.  Development and Individual Differences in Transitive Reasoning: A Fuzzy Trace Theory Approach. , 2007 .

[21]  Drew A. Linzer Reliable Inference in Highly Stratified Contingency Tables: Using Latent Class Models as Density Estimators , 2011, Political Analysis.

[22]  Drew A. Linzer,et al.  poLCA: An R Package for Polytomous Variable Latent Class Analysis , 2011 .

[23]  B. Junker,et al.  Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric Item Response Theory , 2001 .

[24]  Jonathan Templin,et al.  Diagnostic Measurement: Theory, Methods, and Applications , 2010 .

[25]  Erik Simonsen,et al.  Empirical evidence for a four factor framework of personality disorder organization: multigroup confirmatory factor analysis of the Millon Clinical Multiaxial Inventory-III personality disorder scales across Belgian and Danish data samples. , 2010, Journal of personality disorders.

[26]  M. Davier Hierarchical mixtures of diagnostic models , 2010 .

[27]  Jeffrey A Douglas,et al.  Higher-order latent trait models for cognitive diagnosis , 2004 .

[28]  Klaas Sijtsma,et al.  A Latent Class Approach to Estimating Test-Score Reliability , 2011 .

[29]  Wobbe P. Zijlstra,et al.  Outlier Detection in Test and Questionnaire Data , 2007 .

[30]  Marcel A. Croon,et al.  Latent class analysis with ordered latent classe , 1990 .

[31]  E. Muraki A Generalized Partial Credit Model: Application of an EM Algorithm , 1992 .

[32]  L. Andries van der Ark,et al.  Stochastic Ordering Of the Latent Trait by the Sum Score Under Various Polytomous IRT Models , 2005 .

[33]  Jimmy de la Torre,et al.  Analysis of Clinical Data From Cognitive Diagnosis Modeling Framework , 2015 .

[34]  S. Haberman,et al.  Hierarchical Diagnostic Classification Models Morphing into Unidimensional ‘Diagnostic’ Classification Models—A Commentary , 2014, Psychometrika.

[35]  Klaas Sijtsma,et al.  On measurement properties of continuation ratio models , 2001 .

[36]  W. M. Yen Using Simulation Results to Choose a Latent Trait Model , 1981 .

[37]  J. de la Torre DINA Model and Parameter Estimation: A Didactic , 2009 .

[38]  Matthias von Davier,et al.  A General Diagnostic Model Applied to Language Testing Data. Research Report. ETS RR-05-16. , 2005 .

[39]  Brian W. Junker,et al.  Latent and Manifest Monotonicity in Item Response Models , 2000 .

[40]  William D. Schafer,et al.  measurement and evaluation in counseling and Development , 2013 .

[41]  Jeroen K. Vermunt,et al.  The Use of Restricted Latent Class Models for Defining and Testing Nonparametric and Parametric Item Response Theory Models , 2001 .

[42]  Jeffrey A Douglas,et al.  Asymptotic identifiability of nonparametric item response models , 2001 .

[43]  Wijbrandt H van Schuur,et al.  Ordinal Item Response Theory: Mokken Scale Analysis , 2011 .

[44]  Patrick Suppes,et al.  When are Probabilistic Explanations Possible , 1981 .

[45]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[46]  Patrick Suppes,et al.  When are probabilistic explanations possible? , 2005, Synthese.

[47]  P. Rosenbaum,et al.  Conditional Association and Unidimensionality in Monotone Latent Variable Models , 1985 .

[48]  Gina Rossi,et al.  The Adaptation of the MCMI-III in Two Non-English Speaking Countries: State of the Art of the Dutch Language Version , 2008 .

[49]  Chia-Yi Chiu,et al.  A Nonparametric Approach to Cognitive Diagnosis by Proximity to Ideal Response Patterns , 2013, J. Classif..

[50]  Edward H. Haertel Using restricted latent class models to map the skill structure of achievement items , 1989 .

[51]  George Karabatsos,et al.  Order-Constrained Bayes Inference for Dichotomous Models of Unidimensional Nonparametric IRT , 2004 .

[52]  Wicher Bergsma,et al.  A Note on Stochastic Ordering of the Latent Trait Using the Sum of Polytomous Item Scores , 2010 .

[53]  Robert J. Mokken,et al.  A Theory and Procedure of Scale Analysis. , 1973 .

[54]  D. Grayson,et al.  Two-group classification in latent trait theory: Scores with monotone likelihood ratio , 1988 .

[55]  C. Mitchell Dayton,et al.  The Use of Probabilistic Models in the Assessment of Mastery , 1977 .

[56]  Michael J. Brusco,et al.  An Exact Method for Partitioning Dichotomous Items Within the Framework of the Monotone Homogeneity Model , 2015, Psychometrika.

[57]  Stephen E. Fienberg,et al.  Positive dependence concepts for ordinal contingency tables , 1990 .

[58]  R. J. Mokken,et al.  A Theory and Procedure of Scale Analysis: With Applications in Political Research , 1971 .

[59]  Klaas Sijtsma,et al.  Introduction to Nonparametric Item Response Theory , 2002 .

[60]  Klaas Sijtsma,et al.  Methods for Estimating Item-Score Reliability , 2018, Applied psychological measurement.

[61]  G. Masters A rasch model for partial credit scoring , 1982 .

[62]  J. D. L. Torre,et al.  The Generalized DINA Model Framework. , 2011 .

[63]  Rick L. Andrews,et al.  A Comparison of Segment Retention Criteria for Finite Mixture Logit Models , 2003 .

[64]  W. Stout Psychometrics: From practice to theory and back , 2002 .

[65]  Klaas Sijtsma,et al.  Comparing Optimization Algorithms for Item Selection in Mokken Scale Analysis , 2013, J. Classif..

[66]  Mark J. Gierl,et al.  Cognitive diagnostic assessment for education: Theory and applications. , 2007 .

[67]  Susan E. Embretson,et al.  Construct Validity and Cognitive Diagnostic Assessment , 2007 .

[68]  David J. Hessen,et al.  Testing Manifest Monotonicity Using Order-Constrained Statistical Inference , 2013, Psychometrika.

[69]  J. Michell Measurement in psychology: A critical history of a methodological concept. , 1999 .

[70]  W. D. Linden,et al.  Handbook of item response theory , 2015 .

[71]  Chih-Chien Yang,et al.  Separating Latent Classes by Information Criteria , 2007, J. Classif..

[72]  Mia Hubert,et al.  An adjusted boxplot for skewed distributions , 2008, Comput. Stat. Data Anal..

[73]  M.J.H. van Onna,et al.  Bayesian estimation and model selection in ordered latent class models for polytomous items , 2002 .

[74]  D. Andrich A rating formulation for ordered response categories , 1978 .

[75]  J. Ramsay Kernel smoothing approaches to nonparametric item characteristic curve estimation , 1991 .

[76]  Matthias von Davier,et al.  The DINA model as a constrained general diagnostic model: Two variants of a model equivalency. , 2014 .

[77]  Eunike Wetzel,et al.  An Alternative Way to Model Population Ability Distributions in Large-Scale Educational Surveys , 2015, Educational and psychological measurement.

[78]  J. Hagenaars,et al.  Applied Latent Class Analysis , 2003 .

[79]  Verena D. Schmittmann,et al.  Qgraph: Network visualizations of relationships in psychometric data , 2012 .

[80]  Filip Lievens,et al.  Validity and Reliability of Situational Judgement Test Scores , 2016 .

[81]  M. Petersen,et al.  Introduction to Nonparametric Item Response Theory , 2005, Quality of Life Research.

[82]  William Stout,et al.  A New Item Response Theory Modeling Approach with Applications to Unidimensionality Assessment and Ability Estimation , 1990 .

[83]  Thomas Kohlmann,et al.  Applied Latent Class Analysis: Three-Parameter Linear Logistic Latent Class Analysis , 2002 .

[84]  J. D. L. Torre,et al.  DINA Model and Parameter Estimation: A Didactic , 2009 .