Nonparametric Item Response Theory and Mokken Scale Analysis, with Relations to Latent Class Models and Cognitive Diagnostic Models
暂无分享,去创建一个
L. A. van der Ark | Klaas Sijtsma | Gina Rossi | K. Sijtsma | L. V. D. Ark | L. A. van der Ark | G. Rossi
[1] Brian W. Junker,et al. Stochastic ordering using the latent trait and the sum score in polytomous IRT models , 1997 .
[2] van der Ark,et al. Mokken Scale Analysis in R , 2007 .
[3] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[4] F. Samejima. Estimation of latent ability using a response pattern of graded scores , 1968 .
[5] J. Templin,et al. Measurement of psychological disorders using cognitive diagnosis models. , 2006, Psychological methods.
[6] J. L. Ellis,et al. An Inequality for Correlations in Unidimensional Monotone Latent Variable Models for Binary Variables , 2014, Psychometrika.
[7] Klaas Sijtsma,et al. Nonparametric polytomous IRT models for invariant item ordering, with results for parametric models , 1998 .
[8] Jimmy de la Torre. The Generalized DINA Model Framework , 2011 .
[9] I. W. Molenaar,et al. A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks , 1997 .
[10] van der Ark,et al. New Developments in Mokken Scale Analysis in R , 2012 .
[11] Klaas Sijtsma,et al. A tutorial on how to do a Mokken scale analysis on your test and questionnaire data. , 2017, The British journal of mathematical and statistical psychology.
[12] Klaas Sijtsma,et al. Using Conditional Association to Identify Locally Independent Item Sets , 2016 .
[13] Rudy Ligtvoet,et al. Latent class models for testing monotonicity and invariant item ordering for polytomous items. , 2012, The British journal of mathematical and statistical psychology.
[14] J. Vermunt,et al. 9. Multiple Imputation of Incomplete Categorical Data Using Latent Class Analysis , 2008 .
[15] Douglas M. Bates,et al. Estimating the Multilevel Rasch Model: With the lme4 Package , 2007 .
[16] T. Heinen,et al. Latent Class and Discrete Latent Trait Models: Similarities and Differences , 1996 .
[17] B. Junker. Conditional association, essential independence and monotone unidimensional Item response models , 1993 .
[18] James O. Ramsay,et al. Functional Approaches to Modeling Response Data , 2016 .
[19] Marcel A. Croon,et al. Investigating Mokken scalability of dichotomous items by means of ordinal latent class analysis , 1991 .
[20] J. Vermunt,et al. Development and Individual Differences in Transitive Reasoning: A Fuzzy Trace Theory Approach. , 2007 .
[21] Drew A. Linzer. Reliable Inference in Highly Stratified Contingency Tables: Using Latent Class Models as Density Estimators , 2011, Political Analysis.
[22] Drew A. Linzer,et al. poLCA: An R Package for Polytomous Variable Latent Class Analysis , 2011 .
[23] B. Junker,et al. Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric Item Response Theory , 2001 .
[24] Jonathan Templin,et al. Diagnostic Measurement: Theory, Methods, and Applications , 2010 .
[25] Erik Simonsen,et al. Empirical evidence for a four factor framework of personality disorder organization: multigroup confirmatory factor analysis of the Millon Clinical Multiaxial Inventory-III personality disorder scales across Belgian and Danish data samples. , 2010, Journal of personality disorders.
[26] M. Davier. Hierarchical mixtures of diagnostic models , 2010 .
[27] Jeffrey A Douglas,et al. Higher-order latent trait models for cognitive diagnosis , 2004 .
[28] Klaas Sijtsma,et al. A Latent Class Approach to Estimating Test-Score Reliability , 2011 .
[29] Wobbe P. Zijlstra,et al. Outlier Detection in Test and Questionnaire Data , 2007 .
[30] Marcel A. Croon,et al. Latent class analysis with ordered latent classe , 1990 .
[31] E. Muraki. A Generalized Partial Credit Model: Application of an EM Algorithm , 1992 .
[32] L. Andries van der Ark,et al. Stochastic Ordering Of the Latent Trait by the Sum Score Under Various Polytomous IRT Models , 2005 .
[33] Jimmy de la Torre,et al. Analysis of Clinical Data From Cognitive Diagnosis Modeling Framework , 2015 .
[34] S. Haberman,et al. Hierarchical Diagnostic Classification Models Morphing into Unidimensional ‘Diagnostic’ Classification Models—A Commentary , 2014, Psychometrika.
[35] Klaas Sijtsma,et al. On measurement properties of continuation ratio models , 2001 .
[36] W. M. Yen. Using Simulation Results to Choose a Latent Trait Model , 1981 .
[37] J. de la Torre. DINA Model and Parameter Estimation: A Didactic , 2009 .
[38] Matthias von Davier,et al. A General Diagnostic Model Applied to Language Testing Data. Research Report. ETS RR-05-16. , 2005 .
[39] Brian W. Junker,et al. Latent and Manifest Monotonicity in Item Response Models , 2000 .
[40] William D. Schafer,et al. measurement and evaluation in counseling and Development , 2013 .
[41] Jeroen K. Vermunt,et al. The Use of Restricted Latent Class Models for Defining and Testing Nonparametric and Parametric Item Response Theory Models , 2001 .
[42] Jeffrey A Douglas,et al. Asymptotic identifiability of nonparametric item response models , 2001 .
[43] Wijbrandt H van Schuur,et al. Ordinal Item Response Theory: Mokken Scale Analysis , 2011 .
[44] Patrick Suppes,et al. When are Probabilistic Explanations Possible , 1981 .
[45] L. A. Goodman. Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .
[46] Patrick Suppes,et al. When are probabilistic explanations possible? , 2005, Synthese.
[47] P. Rosenbaum,et al. Conditional Association and Unidimensionality in Monotone Latent Variable Models , 1985 .
[48] Gina Rossi,et al. The Adaptation of the MCMI-III in Two Non-English Speaking Countries: State of the Art of the Dutch Language Version , 2008 .
[49] Chia-Yi Chiu,et al. A Nonparametric Approach to Cognitive Diagnosis by Proximity to Ideal Response Patterns , 2013, J. Classif..
[50] Edward H. Haertel. Using restricted latent class models to map the skill structure of achievement items , 1989 .
[51] George Karabatsos,et al. Order-Constrained Bayes Inference for Dichotomous Models of Unidimensional Nonparametric IRT , 2004 .
[52] Wicher Bergsma,et al. A Note on Stochastic Ordering of the Latent Trait Using the Sum of Polytomous Item Scores , 2010 .
[53] Robert J. Mokken,et al. A Theory and Procedure of Scale Analysis. , 1973 .
[54] D. Grayson,et al. Two-group classification in latent trait theory: Scores with monotone likelihood ratio , 1988 .
[55] C. Mitchell Dayton,et al. The Use of Probabilistic Models in the Assessment of Mastery , 1977 .
[56] Michael J. Brusco,et al. An Exact Method for Partitioning Dichotomous Items Within the Framework of the Monotone Homogeneity Model , 2015, Psychometrika.
[57] Stephen E. Fienberg,et al. Positive dependence concepts for ordinal contingency tables , 1990 .
[58] R. J. Mokken,et al. A Theory and Procedure of Scale Analysis: With Applications in Political Research , 1971 .
[59] Klaas Sijtsma,et al. Introduction to Nonparametric Item Response Theory , 2002 .
[60] Klaas Sijtsma,et al. Methods for Estimating Item-Score Reliability , 2018, Applied psychological measurement.
[61] G. Masters. A rasch model for partial credit scoring , 1982 .
[62] J. D. L. Torre,et al. The Generalized DINA Model Framework. , 2011 .
[63] Rick L. Andrews,et al. A Comparison of Segment Retention Criteria for Finite Mixture Logit Models , 2003 .
[64] W. Stout. Psychometrics: From practice to theory and back , 2002 .
[65] Klaas Sijtsma,et al. Comparing Optimization Algorithms for Item Selection in Mokken Scale Analysis , 2013, J. Classif..
[66] Mark J. Gierl,et al. Cognitive diagnostic assessment for education: Theory and applications. , 2007 .
[67] Susan E. Embretson,et al. Construct Validity and Cognitive Diagnostic Assessment , 2007 .
[68] David J. Hessen,et al. Testing Manifest Monotonicity Using Order-Constrained Statistical Inference , 2013, Psychometrika.
[69] J. Michell. Measurement in psychology: A critical history of a methodological concept. , 1999 .
[70] W. D. Linden,et al. Handbook of item response theory , 2015 .
[71] Chih-Chien Yang,et al. Separating Latent Classes by Information Criteria , 2007, J. Classif..
[72] Mia Hubert,et al. An adjusted boxplot for skewed distributions , 2008, Comput. Stat. Data Anal..
[73] M.J.H. van Onna,et al. Bayesian estimation and model selection in ordered latent class models for polytomous items , 2002 .
[74] D. Andrich. A rating formulation for ordered response categories , 1978 .
[75] J. Ramsay. Kernel smoothing approaches to nonparametric item characteristic curve estimation , 1991 .
[76] Matthias von Davier,et al. The DINA model as a constrained general diagnostic model: Two variants of a model equivalency. , 2014 .
[77] Eunike Wetzel,et al. An Alternative Way to Model Population Ability Distributions in Large-Scale Educational Surveys , 2015, Educational and psychological measurement.
[78] J. Hagenaars,et al. Applied Latent Class Analysis , 2003 .
[79] Verena D. Schmittmann,et al. Qgraph: Network visualizations of relationships in psychometric data , 2012 .
[80] Filip Lievens,et al. Validity and Reliability of Situational Judgement Test Scores , 2016 .
[81] M. Petersen,et al. Introduction to Nonparametric Item Response Theory , 2005, Quality of Life Research.
[82] William Stout,et al. A New Item Response Theory Modeling Approach with Applications to Unidimensionality Assessment and Ability Estimation , 1990 .
[83] Thomas Kohlmann,et al. Applied Latent Class Analysis: Three-Parameter Linear Logistic Latent Class Analysis , 2002 .
[84] J. D. L. Torre,et al. DINA Model and Parameter Estimation: A Didactic , 2009 .