Shape-memory NiTi foams produced by solid-state replication with NaF

[1]  Ziya Esen,et al.  Processing of titanium foams using magnesium spacer particles , 2007 .

[2]  Tetsunume Kuromura,et al.  Sound absorption characteristics of porous aluminum fabricated by spacer method , 2006 .

[3]  R. Khalifehzadeh,et al.  Powder Metallurgical Fabrication and Characterization of Nanostructured Porous NiTi Shape-Memory Alloy , 2006 .

[4]  W. Lu,et al.  Surface characteristics, mechanical properties, and cytocompatibility of oxygen plasma-implanted porous nickel titanium shape memory alloy. , 2006, Journal of biomedical materials research. Part A.

[5]  D. Dunand,et al.  Acoustic emissions analysis of damage in amorphous and crystalline metal foams , 2006 .

[6]  M. Li,et al.  Process and compressive properties of porous nickel materials , 2006 .

[7]  M. Taya,et al.  Study on energy absorbing composite structure made of concentric NiTi spring and porous NiTi , 2006 .

[8]  N. Sakurai,et al.  Shape Recovery Characteristics of NiTi Foams Fabricated by a Vacuum Process Applied to a Slurry , 2006 .

[9]  Yu Jingyuan,et al.  BP neural network prediction of the mechanical properties of porous NiTi shape memory alloy prepared by thermal explosion reaction , 2006 .

[10]  Bin Yuan,et al.  A comparative study of the porous TiNi shape-memory alloys fabricated by three different processes , 2006 .

[11]  B. Bertheville Porous single-phase NiTi processed under Ca reducing vapor for use as a bone graft substitute. , 2006, Biomaterials.

[12]  B. B. Panigrahi,et al.  Dilatometric sintering study of Ti–50Ni elemental powders , 2006 .

[13]  Xian-Jin Yang,et al.  Stress–strain behavior of porous NiTi alloys prepared by powders sintering , 2005 .

[14]  D. Dunand,et al.  High strength, low stiffness, porous NiTi with superelastic properties. , 2005, Acta Biomaterialia.

[15]  Bin Jiang,et al.  A novel method for making open cell aluminum foams by powder sintering process , 2005 .

[16]  C. Chung,et al.  Fabrication and properties of porous NiTi shape memory alloys for heavy load-bearing medical applications , 2005 .

[17]  Matthias Epple,et al.  Morphological characterization and in vitro biocompatibility of a porous nickel-titanium alloy. , 2005, Biomaterials.

[18]  D. M. Elzey,et al.  A shape memory-based multifunctional structural actuator panel , 2005 .

[19]  Bin Wang,et al.  On the compressive behaviour of sintered porous coppers with low to medium porosities - Part I: Experimental study , 2005 .

[20]  A. Biswas Porous NiTi by thermal explosion mode of SHS: processing, mechanism and generation of single phase microstructure , 2005 .

[21]  D. Dunand,et al.  Processing and structure of open-celled amorphous metal foams , 2005 .

[22]  Yuyuan Zhao,et al.  Lost carbonate sintering process for manufacturing metal foams , 2005 .

[23]  Akira Kawasaki,et al.  Compression behavior of porous NiTi shape memory alloy , 2005 .

[24]  C. Yeh,et al.  Synthesis of NiTi intermetallics by self-propagating combustion , 2004 .

[25]  A. Mortensen,et al.  Processing of NaCl powders of controlled size and shape for , 2004 .

[26]  K. Yoon,et al.  Porous TiNi Biomaterial by Self‐Propagating High‐Temperature Synthesis , 2004 .

[27]  M. Qidwai,et al.  Numerical assessment of the dynamic behavior of hybrid shape memory alloy composite , 2004 .

[28]  Hans Peter Buchkremer,et al.  Study of production route for titanium parts combining very high porosity and complex shape , 2004 .

[29]  John A. Shaw,et al.  Low-density open-cell foams in the NiTi system , 2003 .

[30]  Eric L. Vandygriff,et al.  Processing and Characterization of NiTi Porous SMA by Elevated Pressure Sintering , 2002 .

[31]  T. Tadaki,et al.  Shape Memory Alloys , 2002 .

[32]  Tae-Hyun Nam,et al.  In Vivo Result of Porous TiNi Shape Memory Alloy: Bone Response and Growth , 2002 .

[33]  L. Rong,et al.  Stress–strain behavior of porous Ni–Ti shape memory intermetallics synthesized from powder sintering , 2000 .

[34]  Hans Peter Buchkremer,et al.  High-porosity titanium, stainless steel and superalloy parts , 2000 .

[35]  L. Rong,et al.  Fabrication of cellular NiTi intermetallic compounds , 2000 .

[36]  T. Bateman,et al.  Effect of nitinol implant porosity on cranial bone ingrowth and apposition after 6 weeks. , 1999, Journal of biomedical materials research.

[37]  Ted A. Bateman,et al.  Porous Materials for Bone Engineering , 1997 .

[38]  J. Roberts,et al.  NiTi and NiTi-TiC composites: Part IV. Neutron diffraction study of twinning and shape-memory recovery , 1996 .

[39]  D. Dunand,et al.  NiTi and NiTi-TiC composites: Part 1. transformation and thermal cycling behavior , 1995 .

[40]  Dale L. Perry,et al.  Handbook of Inorganic Compounds. , 1995 .

[41]  H. Nakajima,et al.  Fabrication of Lotus-type Porous NiTi Shape Memory Alloys using the Continuous Zone Melting Method and Tensile Property , 2007 .

[42]  周俊波,et al.  Preparation of Ti-Ni Porous Alloys and Its Hydrogen Isotope Effects , 2005 .

[43]  L. Yahia,et al.  Hard, soft tissue and in vitro cell response to porous nickel-titanium: a biocompatibility evaluation. , 1999, Bio-medical materials and engineering.

[44]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[45]  Pradyot Patnaik,et al.  Handbook of Inorganic Chemicals , 1997 .

[46]  Michael F. Ashby,et al.  Cellular Solids: Cork , 1997 .

[47]  D. Dunand,et al.  Niti and NiTi-TiC composites: Part III. shape-memory recovery , 1996 .

[48]  C. M. Jackson,et al.  55-Nitinol - The Alloy with a Memory: It's Physical Metallurgy Properties, and Applications. NASA SP-5110 , 1972 .