Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei

The most promising astrophysical sources of kHz gravitational waves (GWs) are the inspiral and merger of binary neutron star(NS)/black hole systems. Maximizing the scientific return of a GW detection will require identifying a coincident electromagnetic (EM) counterpart. One of the most likely sources of isotropic EM emission from compact object mergers is a supernova-like transient powered by the radioactive decay of heavy elements synthesized in ejecta from the merger. We present the first calculations of the optical transients from compact object mergers that self-consistently determine the radioactive heating by means of a nuclear reaction network; using this heating rate, we model the light curve with a one-dimensional Monte Carlo radiation transfer calculation. For an ejecta mass ~ 10 -2 M ⊙ (10 -3 M ⊙ ) the resulting light-curve peaks on a time-scale ~1 d at a V-band luminosity vL v ~ 3 x 10 41 (10 41 )erg s -1 [M V = -15(-14)]; this corresponds to an effective 'f' parameter ~3 × 10- 6 in the Li-Paczynski toy model. We argue that these results are relatively insensitive to uncertainties in the relevant nuclear physics and to the precise early-time dynamics and ejecta composition. Since NS merger transients peak at a luminosity that is a factor of ~10 3 higher than a typical nova, we propose naming these events 'kilo-novae'. Because of the rapid evolution and low luminosity of NS merger transients, EM counterpart searches triggered by GW detections will require close collaboration between the GW and astronomical communities. NS merger transients may also be detectable following a short-duration gamma-ray burst or 'blindly' with present or upcoming optical transient surveys. Because the emission produced by NS merger ejecta is powered by the formation of rare r-process elements, current optical transient surveys can directly constrain the unknown origin of the heaviest elements in the Universe.

[1]  F. Hoyle,et al.  Californium-254 and Supernovae , 1956 .

[2]  F. Hoyle,et al.  Synthesis of the Elements in Stars , 1957 .

[3]  J. Lattimer,et al.  Black-Hole-Neutron-Star Collisions , 1974 .

[4]  J. Lattimer,et al.  The tidal disruption of neutron stars by black holes in close binaries. , 1976 .

[5]  J. T. Kriese,et al.  Luminosity of type I supernovae , 1980 .

[6]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[7]  W. Cottingham,et al.  An Introduction to Nuclear Physics: Constants of nature, conversion factors and notation , 2001 .

[8]  B. Paczyński Gamma-ray bursters at cosmological distances , 1986 .

[9]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[10]  A. Krolak,et al.  Coalescing binaries—Probe of the universe , 1987 .

[11]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[12]  B. Meyer Decompression of Initially Cold Neutron Star Matter: A Mechanism for the r-Process? , 1989 .

[13]  E. Phinney The Rate of Neutron Star Binary Mergers in the Universe: Minimal Predictions for Gravity Wave Detectors , 1991 .

[14]  K.-H. Schmidt,et al.  A Reexamination of the abrasion - ablation model for the description of the nuclear fragmentation reaction , 1991 .

[15]  da Cruz MT,et al.  Half-life of 56Ni. , 1992, Physical review. C, Nuclear physics.

[16]  L. Rezzolla,et al.  Classical and Quantum Gravity , 1996 .

[17]  T. Piran,et al.  Gamma-ray bursts as the death throes of massive binary stars , 1992, astro-ph/9204001.

[18]  W. M. Howard,et al.  r-process nucleosynthesis in the high-entropy supernova bubble , 1992 .

[19]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[20]  Tsvi Piran,et al.  Gravitational Waves and gamma -Ray Bursts , 1993 .

[21]  R. Kurucz,et al.  Atomic line list , 1995 .

[22]  W. Myers,et al.  Nuclear ground state masses and deformations , 1995 .

[23]  R. Harkness,et al.  Gamma-Ray Transfer and Energy Deposition in Supernovae , 1995, astro-ph/9501005.

[24]  S. Goriely,et al.  Nuclear mass formula with Bogolyubov-enhanced shell-quenching: application to r-process , 1996 .

[25]  R. Cayrel The first generations of stars , 1996 .

[26]  The Physics of Type Ia Supernova Light Curves. II. Opacity and Diffusion , 1996, astro-ph/9611195.

[27]  S. Woosley,et al.  Nucleosynthesis in Neutrino-driven Winds. II. Implications for Heavy Element Synthesis , 1996, astro-ph/9611097.

[28]  M. Jong,et al.  Calculated nuclide production yields in relativistic collisions of fissile nuclei , 1998 .

[29]  Hans A. Bethe,et al.  Evolution of Binary Compact Objects That Merge , 1998, astro-ph/9802084.

[30]  Li-Xin Li,et al.  Transient Events from Neutron Star Mergers , 1998 .

[31]  F. Timmes,et al.  The Accuracy, Consistency, and Speed of Five Equations of State for Stellar Hydrodynamics , 1999 .

[32]  S. Rosswog,et al.  r-Process in Neutron Star Mergers , 1999, The Astrophysical journal.

[33]  J. Rhoads The Dynamics and Light Curves of Beamed Gamma-Ray Burst Afterglows , 1999, astro-ph/9903399.

[34]  G. Martínez-Pinedo,et al.  Halflife of 56Ni in cosmic rays , 1999, nucl-th/9902005.

[35]  X. Grave,et al.  SIESTA, a time domain, general purpose simulation program for the VIRGO experiment , 1999 .

[36]  F. Thielemann,et al.  Astrophysical reaction rates from statistical model calculations , 2000, astro-ph/0004059.

[37]  Dario Mancini,et al.  VST project: technical overview , 2000, Astronomical Telescopes + Instrumentation.

[38]  Thomas A. Sebring,et al.  Telescope structures, enclosures, controls, assembly/integration/validation, and commissioning : 27-31 March 2000, Munich, Germany , 2000 .

[39]  T. Padmanabhan Theoretical Astrophysics: Volume 1, Astrophysical Processes , 2000 .

[40]  Supernovae versus Neutron Star Mergers as the Major r-Process Sources. , 2000, The Astrophysical journal.

[41]  Daniel E. Holz,et al.  Cosmology with coalescing massive black holes , 2002 .

[42]  T. Totani,et al.  Orphan Afterglows of Collimated Gamma-Ray Bursts: Rate Predictions and Prospects for Detection , 2002, astro-ph/0204258.

[43]  Robert Jedicke,et al.  Pan-STARRS: A Large Synoptic Survey Telescope Array , 2002, SPIE Astronomical Telescopes + Instrumentation.

[44]  Bernard F. Schutz,et al.  Lighthouses of Gravitational Wave Astronomy , 2001, gr-qc/0111095.

[45]  J. Anthony Tyson,et al.  Survey and Other Telescope Technologies and Discoveries , 2002 .

[46]  Roy Williams,et al.  Network data analysis server (NDAS) prototype development , 2002 .

[47]  J. Sylvestre Prospects for the Detection of Electromagnetic Counterparts to Gravitational Wave Events , 2003, astro-ph/0303512.

[48]  V. Hill,et al.  The Extremely Metal-poor, Neutron Capture-rich Star CS 22892-052: A Comprehensive Abundance Analysis , 2003, astro-ph/0303542.

[49]  Bhal Chandra Joshi,et al.  THE COSMIC COALESCENCE RATES FOR DOUBLE NEUTRON STAR BINARIES , 2004 .

[50]  Alejandro Clocchiatti,et al.  The Deep Lens Survey Transient Search. I. Short Timescale and Astrometric Variability , 2004 .

[51]  J. Huba NRL: Plasma Formulary , 2004 .

[52]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[53]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[54]  Jesper Sollerman,et al.  The optical afterglow of the short γ-ray burst GRB 050709 , 2005, Nature.

[55]  Evolution and merging of binaries with compact objects , 2005, astro-ph/0510379.

[56]  S. B. Cenko,et al.  The afterglow and elliptical host galaxy of the short γ-ray burst GRB 050724 , 2005, Nature.

[57]  S. Rosswog,et al.  Mergers of Neutron Star-Black Hole Binaries with Small Mass Ratios: Nucleosynthesis, Gamma-Ray Bursts, and Electromagnetic Transients , 2005, astro-ph/0508138.

[58]  Late-Time Radio Observations of 68 Type Ibc Supernovae: Strong Constraints on Off-Axis Gamma-Ray Bursts , 2005, astro-ph/0507147.

[59]  W. Hajdas,et al.  An exceptionally bright flare from SGR 1806–20 and the origins of short-duration γ-ray bursts , 2005, Nature.

[60]  E. Ramirez-Ruiz,et al.  Closing in on a Short-Hard Burst Progenitor: Constraints from Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b , 2005, astro-ph/0505480.

[61]  Daniel E. Holz,et al.  Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.

[62]  Derek B. Fox,et al.  The Local Rate and the Progenitor Lifetimes of Short-Hard Gamma-Ray Bursts: Synthesis and Predictions for LIGO , 2005 .

[63]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[64]  J. Mckinney,et al.  Total and Jet Blandford-Znajek Power in the Presence of an Accretion Disk , 2005, astro-ph/0506367.

[65]  J.-L. Atteia,et al.  Discovery of the short γ-ray burst GRB 050709 , 2005, Nature.

[66]  H. Janka,et al.  The r-process nucleosynthesis: a continued challenge for nuclear physics and astrophysics , 2004, astro-ph/0410429.

[67]  I. Stairs,et al.  Binary radio pulsars , 2005 .

[68]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[69]  S. B. Cenko,et al.  The Afterglow, Energetics, and Host Galaxy of the Short-Hard Gamma-Ray Burst 051221a , 2006 .

[70]  Formation of double compact objects , 2006, astro-ph/0612144.

[71]  C. Ott,et al.  Multidimensional Simulations of the Accretion-induced Collapse of White Dwarfs to Neutron Stars , 2006, astro-ph/0601603.

[72]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[73]  E. A. Den Hartog,et al.  Improved Laboratory Transition Probabilities for Er II and Application to the Erbium Abundances of the Sun and Five r-Process-rich, Metal-poor Stars , 2008, 0804.4465.

[74]  Derek B. Fox,et al.  The Local Rate and the Progenitor Lifetimes of Short-Hard Gamma-Ray Bursts: Synthesis and Predictions for the Laser Interferometer Gravitational-Wave Observatory , 2006 .

[75]  Donald Q. Lamb,et al.  A study of compact object mergers as short gamma-ray burst progenitors , 2006 .

[76]  Daniel E. Holz,et al.  Short GRB and binary black hole standard sirens as a probe of dark energy , 2006 .

[77]  R. Thomas,et al.  Time-dependent Monte Carlo Radiative Transfer Calculations for Three-dimensional Supernova Spectra, Light Curves, and Polarization , 2006, astro-ph/0606111.

[78]  I. Ivans,et al.  Improved Laboratory Transition Probabilities for Hf II and Hafnium Abundances in the Sun and 10 Metal-poor Stars , 2007 .

[79]  Gijs Nelemans,et al.  Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries , 2007, astro-ph/0703578.

[80]  M. Kowalski,et al.  Detecting neutrino transients with optical follow-up observations , 2007, astro-ph/0701618.

[81]  É. Biémont,et al.  Experimental and theoretical transition probabilities in singly ionized gold , 2007 .

[82]  G. Martínez-Pinedo,et al.  The role of fission in the r-process , 2007 .

[83]  G. Wasserburg,et al.  Where, oh where has the r-process gone? , 2007, 0708.1767.

[84]  S. C. Keller,et al.  The SkyMapper Telescope and The Southern Sky Survey , 2007, Publications of the Astronomical Society of Australia.

[85]  A. Segovia On nucleosynthesis-relevant conditions in neutrino-driven supernova outflows , 2007 .

[86]  Cedric Deffayet,et al.  Probing Gravity with Spacetime Sirens , 2007, 0709.0003.

[87]  Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. I. Spherically symmetric , 2006, astro-ph/0612582.

[88]  Mamoru Doi,et al.  Exploring the Variable Sky with the Sloan Digital Sky Survey , 2007, 0704.0655.

[89]  B. Metzger,et al.  Neutron-rich freeze-out in viscously spreading accretion discs formed from compact object mergers , 2008, 0810.2535.

[90]  G. Martínez-Pinedo Selected topics in nuclear astrophysics , 2008 .

[91]  A. Levinson,et al.  Structure and nuclear composition of general relativistic, magnetohydrodynamic outflows from neutrino-cooled disks , 2007, 0708.2996.

[92]  P. Hall,et al.  GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION , 2008, 0811.1044.

[93]  R. Perna,et al.  Orphan afterglows in the Universal structured jet model for ?-ray bursts , 2007, 0711.4096.

[94]  Edward K. Porter,et al.  Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce , 2008, 0811.1011.

[95]  B. Metzger,et al.  On the Conditions for Neutron-rich Gamma-Ray Burst Outflows , 2007, 0708.3395.

[96]  Vicky Kalogera,et al.  Host Galaxies Catalog Used in LIGO Searches for Compact Binary Coalescence Events , 2007, 0706.1283.

[97]  B. Metzger,et al.  Time-dependent models of accretion discs formed from compact object mergers , 2008, 0805.4415.

[98]  B. Metzger,et al.  Nickel-rich outflows from accretion discs formed by the accretion-induced collapse of white dwarfs , 2008, 0812.3656.

[99]  E. Berger THE HOST GALAXIES OF SHORT-DURATION GAMMA-RAY BURSTS: LUMINOSITIES, METALLICITIES, AND STAR FORMATION RATES , 2008, 0805.0306.

[100]  C. Stubbs,et al.  Linking optical and infrared observations with gravitational wave sources through transient variability , 2007, 0712.2598.

[101]  B. Metzger,et al.  Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down , 2007, 0712.1233.

[102]  Peter Shawhan,et al.  LOOC UP: locating and observing optical counterparts to gravitational wave bursts , 2008, 0803.0312.

[103]  M. Ruffert,et al.  r-Process Nucleosynthesis in Hot Accretion Disk Flows from Black Hole-Neutron Star Mergers , 2008, 0803.1785.

[104]  Neil Gehrels,et al.  GAMMA-RAY BURST: Sixth Huntsville Symposium , 2009 .

[105]  E. A. Den Hartog,et al.  IMPROVED LABORATORY TRANSITION PROBABILITIES FOR Ce ii, APPLICATION TO THE CERIUM ABUNDANCES OF THE SUN AND FIVE r-PROCESS-RICH, METAL-POOR STARS, AND RARE EARTH LAB DATA SUMMARY , 2009, 0903.1982.

[106]  A. MacFadyen,et al.  THE DYNAMICS AND AFTERGLOW RADIATION OF GAMMA-RAY BURSTS. I. CONSTANT DENSITY MEDIUM , 2009, 0902.2396.

[107]  William H. Lee,et al.  Limits on radioactive powered emission associated with a short-hard GRB 070724A in a star-forming galaxy , 2009, 0908.0030.

[108]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[109]  E. Berger,et al.  DISCOVERY OF THE VERY RED NEAR-INFRARED AND OPTICAL AFTERGLOW OF THE SHORT-DURATION GRB 070724A , 2009, 0908.0940.

[110]  J. Faber Status of neutron star–black hole and binary neutron star simulations , 2009 .

[111]  C. Ott,et al.  NEUTRINO SIGNATURES AND THE NEUTRINO-DRIVEN WIND IN BINARY NEUTRON STAR MERGERS , 2008, 0806.4380.

[112]  A. Fruchter,et al.  A COMPARISON OF THE AFTERGLOWS OF SHORT- AND LONG-DURATION GAMMA-RAY BURSTS , 2008, 0806.3607.

[113]  S. E. Woosley,et al.  TYPE II SUPERNOVAE: MODEL LIGHT CURVES AND STANDARD CANDLE RELATIONSHIPS , 2009, 0910.1590.

[114]  J. P. Rodrigues,et al.  Extending the search for neutrino point sources with IceCube above the horizon. , 2009, Physical review letters.

[115]  William H. Lee,et al.  PHASE TRANSITIONS AND He-SYNTHESIS-DRIVEN WINDS IN NEUTRINO COOLED ACCRETION DISKS: PROSPECTS FOR LATE FLARES IN SHORT GAMMA-RAY BURSTS , 2009, 0904.3752.

[116]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[117]  J. Bloom,et al.  An Unusually Fast-Evolving Supernova , 2009, Science.