Active sensation during orientation behavior in the Drosophila larva: more sense than luck

The fruit fly Drosophila larva demonstrates a sophisticated repertoire of behavior under the control of a numerically simple neural system. Historically, the stereotyped responses of larvae to light and odors captivated the attention of biologists. More recently, the sensory receptors responsible for chemosensation, thermosensation, and vision have been identified. While our understanding of the molecular logic of perception has clearly progressed, little is known about the neural and computational mechanisms guiding movement in sensory gradients. Here we review evidence that larvae orient based on active sensation-a feature distinct from the strategies used by simpler model organisms. Reorientation maneuvers are controlled by the spatiotemporal integration of changes in stimulus intensity detected during runs and lateral head movements.

[1]  Mark A. Frye,et al.  Flies Require Bilateral Sensory Input to Track Odor Gradients in Flight , 2009, Current Biology.

[2]  Jessica Porter,et al.  Mechanisms of scent-tracking in humans , 2007, Nature Neuroscience.

[3]  D. Morton Behavioral responses to hypoxia and hyperoxia in Drosophila larvae , 2011, Fly.

[4]  Katherine I. Nagel,et al.  Biophysical mechanisms underlying olfactory receptor neuron dynamics , 2010, Nature Neuroscience.

[5]  Howard C. Berg,et al.  E. coli in Motion , 2003 .

[6]  H. Martin Osmotropotaxis in the Honey-Bee , 1965, Nature.

[7]  Marc Gershow,et al.  Two Alternating Motor Programs Drive Navigation in Drosophila Larva , 2011, PloS one.

[8]  Thomas M. Morse,et al.  The Fundamental Role of Pirouettes in Caenorhabditis elegans Chemotaxis , 1999, The Journal of Neuroscience.

[9]  M. Wachowiak All in a Sniff: Olfaction as a Model for Active Sensing , 2011, Neuron.

[10]  Matthieu Louis,et al.  A circuit supporting concentration-invariant odor perception in Drosophila , 2009, Journal of biology.

[11]  Bertram Gerber,et al.  The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review. , 2007, Chemical senses.

[12]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[13]  Aravinthan D. T. Samuel,et al.  Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans , 2011, Nature Methods.

[14]  M. Eisenbach Sperm chemotaxis. , 1999, Reviews of reproduction.

[15]  Aurel A. Lazar,et al.  System identification of Drosophila olfactory sensory neurons , 2011, Journal of Computational Neuroscience.

[16]  Upinder S Bhalla,et al.  Rats Smell in Stereo , 2006, Science.

[17]  Claudio R Lazzari,et al.  Orientation mechanisms and sensory organs involved in host location in a dipteran parasitoid larva. , 2011, Journal of insect physiology.

[18]  L. Looger,et al.  Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall , 2010, Nature.

[19]  C. H. Green,et al.  Organization and patterns of inter- and intraspecific variation in the behaviour of Drosophila larvae , 1983, Animal Behaviour.

[20]  C. Mccrohan,et al.  Precise and Fuzzy Coding by Olfactory Sensory Neurons , 2008, The Journal of Neuroscience.

[21]  Simon Benhamou,et al.  Distinguishing between elementary orientation mechanisms by means of path analysis , 1992, Animal Behaviour.

[22]  C. Montell,et al.  Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade , 2008, Nature Neuroscience.

[23]  Laurence R. Harris,et al.  Sensorimotor transformation from light reception to phototactic behavior inDrosophila larvae (Diptera: Drosophilidae) , 1994, Journal of Insect Behavior.

[24]  Aravinthan D. T. Samuel,et al.  Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila. , 2010, Genes & development.

[25]  Yuhai Tu,et al.  Modeling the chemotactic response of Escherichia coli to time-varying stimuli , 2008, Proceedings of the National Academy of Sciences.

[26]  B. Slotnick,et al.  Olfactory intensity-difference thresholds in rats and humans , 1977, Physiology & Behavior.

[27]  E. Walker,et al.  Designation of Chemicals in Terms of the Locomotor Responses They Elicit from Insects: An Update of Dethier et al. (1960) , 2009, Journal of economic entomology.

[28]  A. Gomez-Marin,et al.  Active sampling and decision making in Drosophila chemotaxis , 2011, Nature communications.

[29]  M. Koehl,et al.  The spatial and temporal patterns of odors sampled by lobsters and crabs in a turbulent plume , 2011, Journal of Experimental Biology.

[30]  L. Vosshall,et al.  Bilateral olfactory sensory input enhances chemotaxis behavior , 2008, Nature Neuroscience.

[31]  Donald R. Webster,et al.  The Hydrodynamics of Chemical Cues Among Aquatic Organisms , 2009 .

[32]  H. Hausen,et al.  Mechanism of phototaxis in marine zooplankton , 2008, Nature.

[33]  B. Iyengar,et al.  Genetic Dissection of Behavior: Modulation of Locomotion by Light in the Drosophila melanogaster Larva Requires Genetically Distinct Visual System Functions , 1999, The Journal of Neuroscience.

[34]  Ana Regina Campos,et al.  Kinematic Analysis of Drosophila Larval Locomotion in Response to Intermittent Light Pulses , 2007, Behavior genetics.

[35]  Brian J. Duistermars,et al.  Mechanisms of Odor-Tracking: Multiple Sensors for Enhanced Perception and Behavior , 2010, Front. Cell. Neurosci..

[36]  V. Hartenstein,et al.  Embryonic origin of the Drosophila brain neuropile , 2006, The Journal of comparative neurology.

[37]  S. O. Mast,et al.  Light and the behavior of organisms , 1911 .

[38]  M. Dickinson,et al.  Visual Control of Altitude in Flying Drosophila , 2010, Current Biology.

[39]  André Fiala,et al.  Behavioral Neuroscience , 2022 .

[40]  S. Lockery,et al.  An Image-Free Opto-Mechanical System for Creating Virtual Environments and Imaging Neuronal Activity in Freely Moving Caenorhabditis elegans , 2011, PloS one.

[41]  John R. Carlson,et al.  Translation of Sensory Input into Behavioral Output via an Olfactory System , 2008, Neuron.

[42]  Manfred Forstreuter,et al.  Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context , 2006, Journal of Experimental Biology.

[43]  John B. Thomas,et al.  A sensory feedback circuit coordinates muscle activity in Drosophila , 2007, Molecular and Cellular Neuroscience.

[44]  W S Cain Differential sensitivity for smell: "noise" at the nose. , 1977, Science.

[45]  Rex A. Kerr,et al.  High-Throughput Behavioral Analysis in C. elegans , 2011, Nature Methods.

[46]  Aravinthan D. T. Samuel,et al.  Navigational Decision Making in Drosophila Thermotaxis , 2010, The Journal of Neuroscience.

[47]  Inhibition and the time and spatial patterns of neural activity in sensory perception. , 1965, Transactions of the American Otological Society.

[48]  Greg J. Stephens,et al.  Dimensionality and Dynamics in the Behavior of C. elegans , 2007, PLoS Comput. Biol..

[49]  H. Atwood,et al.  Modular neuropile organization in the Drosophila larval brain facilitates identification and mapping of central neurons , 2006, The Journal of comparative neurology.

[50]  Lei Liu,et al.  Identification and function of thermosensory neurons in Drosophila larvae , 2003, Nature Neuroscience.

[51]  Simon G. Sprecher,et al.  Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons , 2008, Nature.

[52]  R. Cardé,et al.  Navigational Strategies Used by Insects to Find Distant, Wind-Borne Sources of Odor , 2008, Journal of Chemical Ecology.

[53]  David Berrigan,et al.  HOW MAGGOTS MOVE : ALLOMETRY AND KINEMATICS OF CRAWLING IN LARVAL DIPTERA , 1995 .

[54]  P. Garrity,et al.  The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. , 2005, Genes & development.