Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells

[1]  R. Halabian,et al.  The Antifungal Peptide MCh-AMP1 Derived From Matricaria chamomilla Inhibits Candida albicans Growth via Inducing ROS Generation and Altering Fungal Cell Membrane Permeability , 2020, Frontiers in Microbiology.

[2]  S. Straus,et al.  Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions , 2019, Front. Microbiol..

[3]  Suat Sarı,et al.  Discovery of new azoles with potent activity against Candida spp. and Candida albicans biofilms through virtual screening. , 2019, European journal of medicinal chemistry.

[4]  A. Ferreira-Pereira,et al.  Insights on the anticandidal activity of non-antifungal drugs. , 2019, Journal de mycologie medicale.

[5]  M. Klein,et al.  DNase increases the efficacy of antimicrobial photodynamic therapy on Candida albicans biofilms. , 2019, Photodiagnosis and photodynamic therapy.

[6]  I. Silva-Pereira,et al.  Antifungal and anti-inflammatory potential of eschweilenol C-rich fraction derived from Terminalia fagifolia Mart. , 2019, Journal of ethnopharmacology.

[7]  Shujuan Sun,et al.  Antifungal Activity and Potential Mechanism of N-Butylphthalide Alone and in Combination With Fluconazole Against Candida albicans , 2019, Front. Microbiol..

[8]  S. Gorr,et al.  In vivo activity and low toxicity of the second-generation antimicrobial peptide DGL13K , 2019, PloS one.

[9]  K. Xu,et al.  Activity of coumarin against Candida albicans biofilms. , 2019, Journal de mycologie medicale.

[10]  L. C. D. Souza,et al.  Virulence factors of Candida spp. obtained from blood cultures of patients with candidemia attended at tertiary hospitals in Northeast Brazil. , 2019, Journal de mycologie medicale.

[11]  W. Elkhatib,et al.  Correlation between antifungal resistance and virulence factors in Candida albicans recovered from vaginal specimens. , 2019, Microbial pathogenesis.

[12]  J. Lu,et al.  Membrane targeting cationic antimicrobial peptides. , 2019, Journal of colloid and interface science.

[13]  J. Steinmann,et al.  Analysis of antifungal resistance genes in Candida albicans and Candida glabrata using next generation sequencing , 2019, PloS one.

[14]  M. Yasir,et al.  Action of Antimicrobial Peptides against Bacterial Biofilms , 2018, Materials.

[15]  P. Contursi,et al.  Antifungal and anti-biofilm activity of the first cryptic antimicrobial peptide from an archaeal protein against Candida spp. clinical isolates , 2018, Scientific Reports.

[16]  Wei‐Ju Lee,et al.  Factors and outcomes associated with candidemia caused by non‐albicans Candida spp versus Candida albicans in children , 2018, American journal of infection control.

[17]  Jintae Lee,et al.  Suppression of Fluconazole Resistant Candida albicans Biofilm Formation and Filamentation by Methylindole Derivatives , 2018, Front. Microbiol..

[18]  Guangdi Li,et al.  Antifungal activity of spider venom-derived peptide lycosin-I against Candida tropicalis. , 2018, Microbiological research.

[19]  T. Gabaldón,et al.  Evolutionary Emergence of Drug Resistance in Candida Opportunistic Pathogens , 2018, Genes.

[20]  B. Kullberg,et al.  Invasive Candidiasis. , 2019, The New England journal of medicine.

[21]  Shawn Hoon,et al.  Structure-activity relationship studies of ultra-short peptides with potent activities against fluconazole-resistant Candida albicans. , 2018, European journal of medicinal chemistry.

[22]  T. Ma,et al.  Dracorhodin perchlorate inhibits biofilm formation and virulence factors of Candida albicans. , 2018, Journal de mycologie medicale.

[23]  W. Feng,et al.  Research of Mrr1, Cap1 and MDR1 in Candida albicans resistant to azole medications , 2017, Experimental and therapeutic medicine.

[24]  Alexander D. Johnson,et al.  Development and regulation of single- and multi-species Candida albicans biofilms , 2017, Nature Reviews Microbiology.

[25]  Shujuan Sun,et al.  Synergistic Antifungal Effect of Fluconazole Combined with Licofelone against Resistant Candida albicans , 2017, Front. Microbiol..

[26]  Felix Bongomin,et al.  Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision , 2017, Journal of fungi.

[27]  J. Kronstad,et al.  Disarming Fungal Pathogens: Bacillus safensis Inhibits Virulence Factor Production and Biofilm Formation by Cryptococcus neoformans and Candida albicans , 2017, mBio.

[28]  H. Sychrová,et al.  Synthetic antimicrobial peptides of the halictines family disturb the membrane integrity of Candida cells. , 2017, Biochimica et biophysica acta. Biomembranes.

[29]  A. Maxwell,et al.  Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials , 2017, BMC Research Notes.

[30]  Z. Urbańczyk-Lipkowska,et al.  Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds , 2017, Journal of fungi.

[31]  R. Musioł,et al.  Blocking and dislocation of Candida albicans Cdr1p transporter by styrylquinolines. , 2017, International journal of antimicrobial agents.

[32]  E. Berkow,et al.  Fluconazole resistance in Candida species: a current perspective , 2017, Infection and drug resistance.

[33]  N. Santos,et al.  Psd1 Effects on Candida albicans Planktonic Cells and Biofilms , 2017, Front. Cell. Infect. Microbiol..

[34]  T. Mirski,et al.  Utilisation of peptides against microbial infections - a review. , 2017, Annals of agricultural and environmental medicine : AAEM.

[35]  Jianguo Tang,et al.  Candida albicans infection and intestinal immunity. , 2017, Microbiological research.

[36]  S. Gorr,et al.  Antimicrobial Peptides: Mechanisms of Action and Resistance , 2017, Journal of dental research.

[37]  J. Lopez-Ribot,et al.  Targeting Candida albicans filamentation for antifungal drug development , 2017, Virulence.

[38]  A. Fusco-Almeida,et al.  Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis , 2017, Front. Microbiol..

[39]  M. Mahlapuu,et al.  Antimicrobial Peptides: An Emerging Category of Therapeutic Agents , 2016, Front. Cell. Infect. Microbiol..

[40]  O. Franco,et al.  Activity of Scorpion Venom-Derived Antifungal Peptides against Planktonic Cells of Candida spp. and Cryptococcus neoformans and Candida albicans Biofilms , 2016, Front. Microbiol..

[41]  R. Mortara,et al.  A Naturally Occurring Antibody Fragment Neutralizes Infectivity of Diverse Infectious Agents , 2016, Scientific Reports.

[42]  S. Brunke,et al.  Virulence factors in fungal pathogens of man. , 2016, Current opinion in microbiology.

[43]  K. Pogoda,et al.  Candidacidal Activity of Selected Ceragenins and Human Cathelicidin LL-37 in Experimental Settings Mimicking Infection Sites , 2016, PloS one.

[44]  Y. Lyu,et al.  Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida , 2016, Scientific Reports.

[45]  M. Jabra-Rizk,et al.  Pathogenesis of Candida albicans biofilm. , 2016, Pathogens and disease.

[46]  C. Nobile,et al.  Candida albicans biofilms: development, regulation, and molecular mechanisms. , 2016, Microbes and infection.

[47]  G. Morelli,et al.  Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria , 2016, International journal of molecular sciences.

[48]  Neelabh,et al.  Sequential and Structural Aspects of Antifungal Peptides from Animals, Bacteria and Fungi Based on Bioinformatics Tools , 2016, Probiotics and Antimicrobial Proteins.

[49]  E. Cota,et al.  Candidalysin is a fungal peptide toxin critical for mucosal infection , 2016, Nature.

[50]  J. Lopez-Ribot,et al.  Examination of the pathogenic potential of Candida albicans filamentous cells in an animal model of haematogenously disseminated candidiasis. , 2016, FEMS yeast research.

[51]  Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota , 2016, Journal of Microbiology.

[52]  J. Sun,et al.  Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: intracellular DNA binding and cell cycle arrest , 2016, Applied Microbiology and Biotechnology.

[53]  Alexander D. Johnson,et al.  Candida albicans Biofilms and Human Disease. , 2015, Annual review of microbiology.

[54]  Shuai Qiu,et al.  Antimicrobial peptide protonectin disturbs the membrane integrity and induces ROS production in yeast cells. , 2015, Biochimica et biophysica acta.

[55]  J. Drijfhout,et al.  Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures , 2015, PloS one.

[56]  Shamala Devi Sekaran,et al.  Activity of Novel Synthetic Peptides against Candida albicans , 2015, Scientific Reports.

[57]  Dayong Wang,et al.  Effects of Magnolol and Honokiol on Adhesion, Yeast-Hyphal Transition, and Formation of Biofilm by Candida albicans , 2015, PloS one.

[58]  B. Kullberg,et al.  Invasive Candidiasis. , 2015, The New England journal of medicine.

[59]  A. Mitchell,et al.  Fungal biofilms, drug resistance, and recurrent infection. , 2014, Cold Spring Harbor perspectives in medicine.

[60]  S. Lockhart,et al.  Epidemiology of Echinocandin Resistance in Candida , 2014, Current Fungal Infection Reports.

[61]  J. Argüelles,et al.  The Production of Reactive Oxygen Species Is a Universal Action Mechanism of Amphotericin B against Pathogenic Yeasts and Contributes to the Fungicidal Effect of This Drug , 2014, Antimicrobial Agents and Chemotherapy.

[62]  N. Martins,et al.  Candidiasis: Predisposing Factors, Prevention, Diagnosis and Alternative Treatment , 2014, Mycopathologia.

[63]  M. Dathe,et al.  Synergistic Activity of the Tyrocidines, Antimicrobial Cyclodecapeptides from Bacillus aneurinolyticus, with Amphotericin B and Caspofungin against Candida albicans Biofilms , 2014, Antimicrobial Agents and Chemotherapy.

[64]  A. Almaaytah,et al.  Scorpion venom peptides with no disulfide bridges: A review , 2014, Peptides.

[65]  J. Raut,et al.  Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin. , 2014, The Journal of general and applied microbiology.

[66]  A. Alamri,et al.  C. albicans growth, transition, biofilm formation, and gene expression modulation by antimicrobial decapeptide KSL-W , 2013, BMC Microbiology.

[67]  Ho Kim,et al.  Antifungal effect of CopA3 monomer peptide via membrane-active mechanism and stability to proteolysis of enantiomeric D-CopA3. , 2013, Biochemical and biophysical research communications.

[68]  P. van Dijck,et al.  Recent insights into Candida albicans biofilm resistance mechanisms , 2013, Current Genetics.

[69]  D. Leonardi,et al.  Candida Infections, Causes, Targets, and Resistance Mechanisms: Traditional and Alternative Antifungal Agents , 2013, BioMed research international.

[70]  D. MacCallum,et al.  Enhanced efficacy of synergistic combinations of antimicrobial peptides with caspofungin versus Candida albicans in insect and murine models of systemic infection , 2013, European Journal of Clinical Microbiology & Infectious Diseases.

[71]  A. Fusco-Almeida,et al.  Antifungal Efficacy during Candida krusei Infection in Non-Conventional Models Correlates with the Yeast In Vitro Susceptibility Profile , 2013, PloS one.

[72]  Alistair J. P. Brown,et al.  Candida albicans morphogenesis and host defence: discriminating invasion from colonization , 2011, Nature Reviews Microbiology.

[73]  Daniel S. Palacios,et al.  Amphotericin primarily kills yeast by simply binding ergosterol , 2012, Proceedings of the National Academy of Sciences.

[74]  R. Petruzzelli,et al.  Fungicidal activity of the human peptide hepcidin 20 alone or in combination with other antifungals against Candida glabrata isolates , 2011, Peptides.

[75]  Robert E. W. Hancock,et al.  Multifunctional cationic host defence peptides and their clinical applications , 2011, Cellular and Molecular Life Sciences.

[76]  A. Srinivasan,et al.  Effects of Fluconazole, Amphotericin B, and Caspofungin on Candida albicans Biofilms under Conditions of Flow and on Biofilm Dispersion , 2011, Antimicrobial Agents and Chemotherapy.

[77]  J. Wiesner,et al.  Antimicrobial peptides: The ancient arm of the human immune system , 2010, Virulence.

[78]  D. Andes,et al.  Role of Fks1p and Matrix Glucan in Candida albicans Biofilm Resistance to an Echinocandin, Pyrimidine, and Polyene , 2010, Antimicrobial Agents and Chemotherapy.

[79]  P. Coote,et al.  Combination of caspofungin or anidulafungin with antimicrobial peptides results in potent synergistic killing of Candida albicans and Candida glabrata in vitro. , 2010, International journal of antimicrobial agents.

[80]  Yibing Huang,et al.  Alpha-helical cationic antimicrobial peptides: relationships of structure and function , 2010, Protein & Cell.

[81]  M. Subirade,et al.  In vitro efficacy of nisin Z against Candida albicans adhesion and transition following contact with normal human gingival cells , 2009, Journal of applied microbiology.

[82]  A. Nijnik,et al.  Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections , 2009, Emerging health threats journal.

[83]  Ildinete Silva-Pereira,et al.  Annals of Clinical Microbiology and Antimicrobials Open Access Antimicrobial Effect of Farnesol, a Candida Albicans Quorum Sensing Molecule, on Paracoccidioides Brasiliensis Growth and Morphogenesis , 2022 .

[84]  Shujuan Sun,et al.  Synergistic activity of azoles with amiodarone against clinically resistant Candida albicans tested by chequerboard and time-kill methods. , 2008, Journal of medical microbiology.

[85]  R. Hancock,et al.  Alternative mechanisms of action of cationic antimicrobial peptides on bacteria , 2007, Expert review of anti-infective therapy.

[86]  S. Menor,et al.  Microplate Alamar blue assay for susceptibility testing of Candida albicans biofilms. , 2007, Medical mycology.

[87]  M. Whiteway,et al.  Morphogenesis in Candida albicans. , 2007, Annual review of microbiology.

[88]  Kailash Gulshan,et al.  Multidrug Resistance in Fungi , 2007, Eukaryotic Cell.

[89]  D. Andes,et al.  Beta -1,3 glucan as a test for central venous catheter biofilm infection. , 2007, The Journal of infectious diseases.

[90]  C. Kumamoto,et al.  Biofilm formation by fluconazole-resistant Candida albicans strains is inhibited by fluconazole. , 2007, The Journal of antimicrobial chemotherapy.

[91]  T. Mikami,et al.  Hyphal formation of Candida albicans is inhibited by salivary mucin. , 2007, Biological & pharmaceutical bulletin.

[92]  Soon-Cheang Quah,et al.  A Current Perspective , 2007 .

[93]  R. Hancock,et al.  Cationic host defense (antimicrobial) peptides. , 2006, Current opinion in immunology.

[94]  J. Heitman,et al.  Galleria mellonella as a Model System To Study Cryptococcus neoformans Pathogenesis , 2005, Infection and Immunity.

[95]  G. Corzo,et al.  Scorpion Venom Peptides without Disulfide Bridges , 2005, IUBMB life.

[96]  L. Bobek,et al.  In vitro synergic antifungal effect of MUC7 12-mer with histatin-5 12-mer or miconazole. , 2004, The Journal of antimicrobial chemotherapy.

[97]  J. Lopez-Ribot,et al.  Engineered Control of Cell Morphology In Vivo Reveals Distinct Roles for Yeast and Filamentous Forms of Candida albicans during Infection , 2003, Eukaryotic Cell.

[98]  M. Ghannoum,et al.  Mechanism of Fluconazole Resistance in Candida albicans Biofilms: Phase-Specific Role of Efflux Pumps and Membrane Sterols , 2003, Infection and Immunity.

[99]  J. Bosso,et al.  Comparison of methods of interpretation of checkerboard synergy testing. , 2002, Diagnostic microbiology and infectious disease.

[100]  H. Ceri,et al.  Biofilm bacteria: formation and comparative susceptibility to antibiotics. , 2002, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire.

[101]  R. Calderone,et al.  Virulence factors of Candida albicans. , 2001, Trends in microbiology.

[102]  R. C. Macridis A review , 1963 .