Accelerated wave-based acoustics simulation

We present an efficient technique to model sound propagation accurately in an arbitrary 3D scene by numerically integrating the wave equation. We show that by performing an offline modal analysis and using eigenvalues from a refined mesh, we can simulate sound propagation with reduced dispersion on a much coarser mesh, enabling accelerated computation. Since performing a modal analysis on the complete scene is usually not feasible, we present a domain decomposition approach to drastically shorten the pre-processing time. We introduce a simple, efficient and stable technique for handling the communication between the domain partitions. We validate the accuracy of our approach against cases with known analytical solutions. With our approach, we have observed up to an order of magnitude speedup compared to a standard finite-difference technique.

[1]  Ming C. Lin,et al.  Interactive sound synthesis for large scale environments , 2006, I3D '06.

[2]  Matti Karjalainen,et al.  Digital Waveguides versus Finite Difference Structures: Equivalence and Mixed Modeling , 2004, EURASIP J. Adv. Signal Process..

[3]  Lauri Savioja,et al.  Modeling Techniques for Virtual Acoustics , 1999 .

[4]  Jont B. Allen,et al.  Image method for efficiently simulating small‐room acoustics , 1976 .

[5]  Shinichi Sakamoto,et al.  Numerical analysis of sound propagation in rooms using the finite difference time domain method , 2006 .

[6]  Tapio Takala,et al.  Simulation of Room Acoustics with a 3-D Finite Difference Mesh , 1994, ICMC.

[7]  Tapio Lokki,et al.  Physically-based auralization : design, implementation, and evaluation , 2002 .

[8]  S. Van Duyne,et al.  The 2-D digital waveguide mesh , 1993, Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[9]  Thomas Funkhouser,et al.  A beam tracing method for interactive architectural acoustics. , 2004, The Journal of the Acoustical Society of America.

[10]  Dinesh K. Pai,et al.  FoleyAutomatic: physically-based sound effects for interactive simulation and animation , 2001, SIGGRAPH.

[11]  Dick Botteldooren,et al.  ACOUSTICAL FINITE-DIFFERENCE TIME-DOMAIN SIMULATION IN A QUASI-CARTESIAN GRID , 1994 .

[12]  Hans Hagen,et al.  Visualizing the Phonon Map , 2006, EuroVis.

[13]  D. Botteldooren Finite‐difference time‐domain simulation of low‐frequency room acoustic problems , 1995 .

[14]  Chen Shen,et al.  Synthesizing sounds from rigid-body simulations , 2002, SCA '02.

[15]  A. Krokstad,et al.  Calculating the acoustical room response by the use of a ray tracing technique , 1968 .

[16]  R. M. Alford,et al.  ACCURACY OF FINITE‐DIFFERENCE MODELING OF THE ACOUSTIC WAVE EQUATION , 1974 .

[17]  Heinrich Kuttruff,et al.  Room acoustics , 1973 .

[18]  Lawrence E. Kinsler,et al.  Fundamentals of acoustics , 1950 .

[19]  J. H. Rindel,et al.  The Use of Computer Modeling in Room Acoustics , 2000 .

[20]  Mendel Kleiner,et al.  Auralization-An Overview , 1993 .

[21]  Hans Hagen,et al.  Phonon tracing for auralization and visualization of sound , 2005, VIS 05. IEEE Visualization, 2005..

[22]  Thomas Funkhouser,et al.  Survey of Methods for Modeling Sound Propagation in Interactive Virtual Environment Systems , 2003 .

[23]  D. Murphy,et al.  Acoustic Modeling Using the Digital Waveguide Mesh , 2007, IEEE Signal Processing Magazine.

[24]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[25]  Augusto Sarti,et al.  REAL TIME MODELING OF ACOUSTIC PROPAGATION IN COMPLEX ENVIRONMENTS , 2004 .

[26]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[27]  Tapio Takala,et al.  Waveguide Mesh Method for Low-Frequency Simulation of Room Acoustics , 1995 .

[28]  Sylvain Lefebvre,et al.  Instant Sound Scattering , 2007, Rendering Techniques.

[29]  Thomas A. Funkhouser,et al.  Modeling acoustics in virtual environments using the uniform theory of diffraction , 2001, SIGGRAPH.

[30]  Thomas A. Funkhouser,et al.  Priority‐Driven Acoustic Modeling for Virtual Environments , 2000, Comput. Graph. Forum.