Observational constraints on thawing quintessence scalar field model

[1]  M. Malekjani,et al.  f(T) cosmology against the cosmographic method: A new study using mock and observational data , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  A. Bernui,et al.  Observational constraints on Starobinsky f(R) cosmology from cosmic expansion and structure growth data , 2021, The European Physical Journal C.

[3]  I. Akhlaghi,et al.  Evolution of matter perturbations and observational constraints on tachyon scalar field model , 2020 .

[4]  Anzhong Wang,et al.  Constraints on quintessence scalar field models using cosmological observations , 2018, Physical Review D.

[5]  Ke Wang,et al.  Distance priors from Planck final release , 2018, Journal of Cosmology and Astroparticle Physics.

[6]  S. Basilakos,et al.  Model selection and constraints from holographic dark energy scenarios , 2018, 1804.02989.

[7]  Bharat Ratra,et al.  Hubble Parameter and Baryon Acoustic Oscillation Measurement Constraints on the Hubble Constant, the Deviation from the Spatially Flat ΛCDM Model, the Deceleration–Acceleration Transition Redshift, and Spatial Curvature , 2017, 1711.03437.

[8]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[9]  D. Mota,et al.  Constraints to Dark Energy Using PADE Parameterizations , 2017, 1706.02537.

[10]  V. Oikonomou,et al.  Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution , 2017, 1705.11098.

[11]  B. Garilli,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): The growth of structure at $0.5 < z < 1.2$ from redshift-space distortions in the clustering of the PDR-2 final sample , 2016, 1612.05645.

[12]  D. Scolnic,et al.  Testing ΛCDM at the lowest redshifts with SN Ia and galaxy velocities , 2016, 1611.09862.

[13]  S. Basilakos,et al.  Agegraphic dark energy: growth index and cosmological implications , 2016, 1609.01998.

[14]  M. Setare,et al.  Evolution of spherical over-densities in tachyon scalar field model , 2016, 1607.05318.

[15]  Daniel Thomas,et al.  A 6% measurement of the Hubble parameter at z∼0.45: direct evidence of the epoch of cosmic re-acceleration , 2016, 1601.01701.

[16]  Naoyuki Tamura,et al.  The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ∼ 1.4 , 2015, 1511.08083.

[17]  S. Capozziello,et al.  f(T) teleparallel gravity and cosmology , 2015, Reports on progress in physics. Physical Society.

[18]  S. Basilakos,et al.  Growth of matter perturbations in clustered holographic dark energy cosmologies , 2015, 1510.03996.

[19]  S. Basilakos,et al.  How clustering dark energy affects matter perturbations , 2015, 1504.01262.

[20]  E. Branchini,et al.  Growth Rate of Cosmological Perturbations at z∼0.1 from a New Observational Test. , 2015, Physical review letters.

[21]  Michele Moresco Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z ∼ 2 , 2015, 1503.01116.

[22]  Kazuharu Bamba,et al.  Inflationary Cosmology in Modified Gravity Theories , 2015, Symmetry.

[23]  M. Malekjani,et al.  Can observational growth rate data favor the clustering dark energy models? , 2014, 1411.0780.

[24]  W. Percival,et al.  The clustering of the SDSS main galaxy sample – II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z = 0.15 , 2014, 1409.3238.

[25]  Rongjia Yang,et al.  Discriminating dark energy models by using the Statefinder hierarchy and the growth rate of matter perturbations , 2014, 1406.7514.

[26]  A. Popolo,et al.  Effects of shear and rotation on the spherical collapse model for clustering dark energy , 2014, 1406.1448.

[27]  R. C. Batista Impact of dark energy perturbations on the growth index , 2014, 1403.2985.

[28]  J. Kneib,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS anisotropic galaxy clustering , 2013, 1312.4889.

[29]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples , 2013, 1312.4854.

[30]  Lixin Xu,et al.  Constraints on a decomposed dark fluid with constant adiabatic sound speed by jointing the geometry test and growth rate after Planck data , 2013, 1312.2769.

[31]  D. Huterer,et al.  Chasing the phantom: A closer look at type Ia supernovae and the dark energy equation of state , 2013, 1312.1688.

[32]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): improved cosmic growth measurements using multiple tracers of large-scale structure , 2013, 1309.5556.

[33]  L. Moscardini,et al.  A comparison of structure formation in minimally and non-minimally coupled quintessence models , 2013, 1307.7026.

[34]  D. Mota,et al.  ISIS: a new N-body cosmological code with scalar fields based on RAMSES , 2013, 1307.6748.

[35]  J. Weller,et al.  Cluster probes of dark energy clustering , 2013, 1305.6982.

[36]  Jon Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements and the strong power of f(z)σ8(z) on constraining dark energy , 2013, 1303.4486.

[37]  F. Pace,et al.  Structure formation in inhomogeneous Early Dark Energy models , 2013, 1303.0414.

[38]  D. Mota,et al.  Releasing scalar fields: cosmological simulations of scalar-tensor theories for gravity beyond the static approximation. , 2013, Physical review letters.

[39]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[40]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[41]  Siqi Liu,et al.  Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven , 2012, 1207.4541.

[42]  S. Capozziello,et al.  Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests , 2012, 1205.3421.

[43]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: joint measurements of the expansion and growth history at z < 1 , 2012, 1204.3674.

[44]  S. Basilakos,et al.  The growth index of matter perturbations and modified gravity , 2012, 1203.6724.

[45]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample , 2012, 1203.6594.

[46]  M. Hudson,et al.  THE GROWTH RATE OF COSMIC STRUCTURE FROM PECULIAR VELOCITIES AT LOW AND HIGH REDSHIFTS , 2012, 1203.4814.

[47]  E. Majerotto,et al.  Fingerprinting Dark Energy III: distinctive marks of viscosity , 2012, 1203.2157.

[48]  A. Cuesta,et al.  A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey , 2012, 1202.0090.

[49]  L. Moscardini,et al.  Structure formation in cosmologies with oscillating dark energy , 2011, 1111.1556.

[50]  Robert P. Kirshner,et al.  Cosmic flows in the nearby universe from Type Ia supernovae , 2011, 1111.0631.

[51]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[52]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[53]  D. Parkinson,et al.  The WiggleZ Dark Energy Survey: constraining the evolution of Newton's constant using the growth rate of structure , 2011, 1107.3659.

[54]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[55]  Antonio Padilla,et al.  Modified Gravity and Cosmology , 2011, 1106.2476.

[56]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9 , 2011, 1104.2948.

[57]  D. Garfinkle,et al.  Gravitational collapse of k-essence , 2011, 1103.0290.

[58]  W. Percival,et al.  Interpreting large-scale redshift-space distortion measurements , 2011, 1102.1014.

[59]  K. Masters,et al.  Local gravity versus local velocity: solutions for β and non-linear bias , 2010, 1011.3114.

[60]  Sergei D. Odintsov,et al.  Unified cosmic history in modified gravity: From F ( R ) theory to Lorentz non-invariant models , 2010, 1011.0544.

[61]  D. Mota,et al.  Chameleon dark energy models with characteristic signatures , 2010, 1010.3769.

[62]  M. Plionis,et al.  Confronting Dark Energy Models using Galaxy Cluster Number Counts , 2010, 1006.3418.

[63]  A. A. Sen,et al.  Evolution of spherical overdensity in thawing dark energy models , 2010, 1003.4094.

[64]  S. Tsujikawa,et al.  f(R) Theories , 2010, Living reviews in relativity.

[65]  D. Huterer,et al.  Measuring the Speed of Dark: Detecting Dark Energy Perturbations , 2010, 1002.1311.

[66]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2010, 1001.4538.

[67]  A. Melchiorri,et al.  No evidence for dark energy dynamics from a global analysis of cosmological data , 2009, 0908.3186.

[68]  L. Perivolaropoulos,et al.  Spherical collapse model and cluster formation beyond the Λ cosmology: Indications for a clustered dark energy? , 2009, 0908.1333.

[69]  M. Plionis,et al.  Hubble expansion and structure formation in time varying vacuum models , 2009, 0907.4555.

[70]  Anjan A. Sen,et al.  The thawing dark energy dynamics: Can we detect it? , 2009, 0907.2814.

[71]  Anjan A. Sen,et al.  Transient and late time attractor tachyon dark energy: Can we distinguish it from quintessence? , 2009, 0904.1070.

[72]  A. Sen,et al.  Phantom dark energy models with a nearly flat potential , 2008, 0808.1880.

[73]  E. Gaztañaga,et al.  Clustering of luminous red galaxies – IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z) , 2008, 0807.3551.

[74]  A. Riotto,et al.  Parameterizing the effect of dark energy perturbations on the growth of structures , 2008, 0807.3343.

[75]  R. Rosenfeld,et al.  Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenarios , 2008, 0806.3461.

[76]  T. Sotiriou,et al.  f(R) Theories Of Gravity , 2008, 0805.1726.

[77]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[78]  Anjan A. Sen,et al.  Thawing quintessence with a nearly flat potential , 2007, 0712.3450.

[79]  R. Rosenfeld,et al.  Dynamical mutation of dark energy , 2007, 0710.2368.

[80]  D. Polarski,et al.  On the growth of linear perturbations , 2007, 0710.1510.

[81]  J. Silk,et al.  On the Magnitude of Dark Energy Voids and Overdensities , 2007, 0709.2227.

[82]  R. Cai,et al.  A new model of agegraphic dark energy , 2007, 0708.0884.

[83]  T. Koivisto,et al.  Constraining dark energy anisotropic stress , 2007, 0708.0830.

[84]  R. Cai,et al.  Interacting agegraphic dark energy , 2007, 0707.4052.

[85]  R. Cai A dark energy model characterized by the age of the Universe , 2007, 0707.4049.

[86]  R. Rosenfeld,et al.  Structure formation in the presence of dark energy perturbations , 2007, 0707.2882.

[87]  T. Padmanabhan,et al.  Dark energy and gravity , 2007, 0705.2533.

[88]  R. Maartens Dark Energy and Dark Gravity , 2007 .

[89]  W. M. Wood-Vasey,et al.  Scrutinizing Exotic Cosmological Models Using ESSENCE Supernova Data Combined with Other Cosmological Probes , 2007, astro-ph/0701510.

[90]  W. M. Wood-Vasey,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[91]  T. Koivisto,et al.  Cosmology and Astrophysical Constraints of Gauss-Bonnet Dark Energy , 2006, astro-ph/0606078.

[92]  E. Copeland,et al.  Dynamics of dark energy , 2006, hep-th/0603057.

[93]  D. Eisenstein,et al.  Baryonic Acoustic Oscillations in Simulated Galaxy Redshift Surveys , 2005, astro-ph/0507338.

[94]  E. Linder,et al.  Limits of quintessence. , 2005, Physical review letters.

[95]  A. Melchiorri,et al.  Constraining dark energy with cross-correlated CMB and large scale structure data , 2005, astro-ph/0504115.

[96]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[97]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[98]  S. Nojiri,et al.  Properties of singularities in the (phantom) dark energy universe , 2005, hep-th/0501025.

[99]  L. Verde,et al.  Constraints on the redshift dependence of the dark energy potential , 2004, astro-ph/0412269.

[100]  R. Scranton,et al.  Measuring dark energy clustering with CMB-galaxy correlations , 2004, astro-ph/0408456.

[101]  E. Elizalde,et al.  Late-time cosmology in (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up , 2004, hep-th/0405034.

[102]  Miao Li A MODEL OF HOLOGRAPHIC DARK ENERGY , 2004, hep-th/0403127.

[103]  M. Bartelmann,et al.  On the spherical collapse model in dark energy cosmologies , 2004, astro-ph/0401504.

[104]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[105]  O. Dor'e,et al.  Probing dark energy perturbations: The dark energy equation of state and speed of sound as measured by WMAP , 2003, astro-ph/0307100.

[106]  S. Nojiri,et al.  de Sitter brane universe induced by phantom and quantum effects , 2003, hep-th/0304131.

[107]  D. Huterer,et al.  Growth rate of large-scale structure as a powerful probe of dark energy , 2003, astro-ph/0304268.

[108]  S. Nojiri,et al.  Quantum de Sitter cosmology and phantom matter , 2003, hep-th/0303117.

[109]  L. Verde,et al.  Constraints on the Equation of State of Dark Energy and the Hubble Constant from Stellar Ages and the Cosmic Microwave Background , 2003, astro-ph/0302560.

[110]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe , 2002, astro-ph/0212375.

[111]  Scott D. Thomas,et al.  Holography stabilizes the vacuum energy. , 2002, Physical review letters.

[112]  T. Padmanabhan,et al.  Can the clustered dark matter and the smooth dark energy arise from the same scalar field , 2002, hep-th/0205055.

[113]  Ashoke Sen,et al.  Rolling Tachyon , 2002, hep-th/0203211.

[114]  P. Steinhardt,et al.  Measuring the speed of sound of quintessence. , 2001, Physical review letters.

[115]  S. Burles,et al.  Big Bang Nucleosynthesis Predictions for Precision Cosmology , 2000, astro-ph/0010171.

[116]  Paul J. Steinhardt,et al.  Essentials of k essence , 2000, astro-ph/0006373.

[117]  P. Steinhardt,et al.  Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration , 2000, Physical review letters.

[118]  Sean M. Carroll The Cosmological Constant , 2000, Living reviews in relativity.

[119]  T. Chiba,et al.  Kinetically driven quintessence , 1999, astro-ph/9912463.

[120]  J. Goldhaber Sodium-calcium exchange: the phantom menace. , 1999, Circulation research.

[121]  V. Mukhanov,et al.  Perturbations in k-inflation , 1999, hep-th/9904176.

[122]  C. Armendáriz-Picón,et al.  k-Inflation , 1999, hep-th/9904075.

[123]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[124]  A. Nelson,et al.  Effective field theory, black holes, and the cosmological constant , 1998, hep-th/9803132.

[125]  Waga,et al.  Decaying Lambda cosmologies and power spectrum. , 1994, Physical review. D, Particles and fields.

[126]  P. Peebles,et al.  Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.

[127]  C. Wetterich COSMOLOGY AND THE FATE OF DILATATION SYMMETRY , 1988, 1711.03844.

[128]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[129]  H. Akaike A new look at the statistical model identification , 1974 .

[130]  Steven Weinberg,et al.  The Cosmological Constant Problem , 1989 .

[131]  Yong-Seon Song,et al.  ournal of C osmology and A stroparticle hysics Reconstructing the history of structure formation using redshift distortions , 2022 .