Autonomous quantum thermal machine for generating steady-state entanglement

We discuss a simple quantum thermal machine for the generation of steady-state entanglement between two interacting qubits. The machine is autonomous in the sense that it uses only incoherent interactions with thermal baths, but no source of coherence or external control. By weakly coupling the qubits to thermal baths at different temperatures, inducing a heat current through the system, steady-state entanglement is generated far from thermal equilibrium. Finally, we discuss two possible implementations, using superconducting flux qubits or a semiconductor double quantum dot. Experimental prospects for steady-state entanglement are promising in both systems.

[1]  Luis Quiroga,et al.  Nonequilibrium thermal entanglement , 2007 .

[2]  F K Wilhelm,et al.  Quantum superposition of macroscopic persistent-current states. , 2000, Science.

[3]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[4]  Paul Skrzypczyk,et al.  The smallest refrigerators can reach maximal efficiency , 2010, 1009.0865.

[5]  L. Jakóbczyk Entangling two qubits by dissipation , 2002 .

[6]  E Solano,et al.  Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. , 2010, Physical review letters.

[7]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[8]  A S Sørensen,et al.  Dissipative preparation of entanglement in optical cavities. , 2010, Physical review letters.

[9]  W. V. D. Wiel,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[10]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[11]  LETTER TO THE EDITOR: Entanglement and tensor product decomposition for two fermions , 2004, quant-ph/0405108.

[12]  W. Dur,et al.  Entanglement and its dynamics in open, dissipative systems , 2007, quant-ph/0703138.

[13]  John M. Martinis,et al.  Decoherence of a superconducting qubit due to bias noise , 2003 .

[14]  M. Beck,et al.  Dipole coupling of a double quantum dot to a microwave resonator. , 2011, Physical review letters.

[15]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[16]  Gernot Schaller,et al.  Open Quantum Systems Far from Equilibrium , 2014 .

[17]  A. Gossard,et al.  Quantum coherence in a one-electron semiconductor charge qubit. , 2010, Physical review letters.

[18]  C. H. Keitel,et al.  Robust coherent preparation of entangled states of two coupled flux qubits via dynamic control of the transition frequencies , 2008, 0810.2453.

[19]  A. Sørensen,et al.  Steady-state entanglement of two superconducting qubits engineered by dissipation , 2013, 1304.0746.

[20]  E Il'ichev,et al.  Evidence for entangled states of two coupled flux qubits. , 2004, Physical review letters.

[21]  G. Milburn,et al.  Entanglement in the steady state of a collective-angular-momentum (Dicke) model , 2002 .

[22]  M. Znidaric Entanglement in stationary nonequilibrium states at high energies , 2011, 1112.4415.

[23]  Mauro Antezza,et al.  Creation and protection of entanglement in systems out of thermal equilibrium , 2013, 1310.8081.

[24]  M. B. Plenio,et al.  Cavity-loss-induced generation of entangled atoms , 1999 .

[25]  Franco Nori,et al.  Controllable coupling between flux qubits. , 2006, Physical review letters.

[26]  Markus Tiersch,et al.  Quantum transport efficiency and Fourier's law. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[28]  Almut Beige,et al.  Cooling atoms into entangled states , 2009, 0903.2796.

[29]  L. Frunzio,et al.  Autonomously stabilized entanglement between two superconducting quantum bits , 2013, Nature.

[30]  A. Sørensen,et al.  Driving two atoms in an optical cavity into an entangled steady state using engineered decay , 2011, 1110.1024.

[31]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[32]  Christine A Muschik,et al.  Entanglement distillation by dissipation and continuous quantum repeaters. , 2010, Physical review letters.

[33]  R. Bowler,et al.  Dissipative production of a maximally entangled steady state of two quantum bits , 2013, Nature.

[34]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[35]  F. Nori,et al.  Fast two-bit operations in inductively coupled flux qubits , 2003, cond-mat/0309491.

[36]  Christine A Muschik,et al.  Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. , 2010, Physical review letters.

[37]  J. Eisert,et al.  Entanglement of nanoelectromechanical oscillators by Cooper-pair tunneling , 2012, 1210.0665.

[38]  Hakan E. Tureci,et al.  Steady-state entanglement of spatially separated qubits via quantum bath engineering , 2014, 1403.6474.

[39]  Giuseppe Compagno,et al.  Entanglement Trapping in Structured Environments , 2008, 0805.3056.

[40]  Yi-Xin Chen,et al.  Quantum refrigerator driven by current noise , 2011, 1104.2363.

[41]  Entanglement induced by a single-mode heat environment , 2001, quant-ph/0109052.

[42]  M B Plenio,et al.  Entangled light from white noise. , 2002, Physical review letters.

[43]  Fabio Benatti,et al.  Environment induced entanglement in Markovian dissipative dynamics. , 2003, Physical review letters.

[44]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[45]  G Catelani,et al.  Flux qubits with long coherence times for hybrid quantum circuits. , 2014, Physical review letters.

[46]  Paul Skrzypczyk,et al.  Entanglement enhances cooling in microscopic quantum refrigerators. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  C. Harmans,et al.  Spectroscopy on two coupled superconducting flux qubits. , 2003, Physical review letters.

[48]  V. Giovannetti,et al.  Mediated Homogenization , 2007, 0708.2657.

[49]  M R Delbecq,et al.  Coupling a quantum dot, fermionic leads, and a microwave cavity on a chip. , 2011, Physical review letters.

[50]  Daniel Braun,et al.  Creation of entanglement by interaction with a common heat bath. , 2002, Physical review letters.

[51]  H. Briegel,et al.  Dynamic entanglement in oscillating molecules and potential biological implications. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[53]  Mauro Antezza,et al.  Steady entanglement out of thermal equilibrium , 2013, 1304.2864.

[54]  W. Dur,et al.  Steady-state entanglement in open and noisy quantum systems , 2006 .