Fast Cluster Polygonization and its Applications in Data-Rich Environments

We develop a linear time method for transforming clusters of 2D-point data into area data while identifying the shape robustly. This method translates a data layer into a space filling layer where shaped clusters are identified as the resulting regions. The method is based on robustly identifying cluster boundaries in point data using the Delaunay Diagram. The method can then be applied to modelling point data, to displaying choropleth maps of point data without a reference map, to identifying association rules in the spatial dimension for geographical data mining, or to measuring a gap between clusters for cluster validity.

[1]  Ickjai Lee,et al.  Argument free clustering via boundary extraction for massive point-data Sets , 2002 .

[2]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[3]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[4]  I. Mcharg Design With Nature , 1969 .

[5]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[6]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[7]  C. Gold Problems with handling spatial data ― the Voronoi approach , 1991 .

[8]  Sunghee Choi,et al.  A Simple Algorithm for Homeomorphic Surface Reconstruction , 2002, Int. J. Comput. Geom. Appl..

[9]  Stan Openshaw,et al.  Two exploratory space-time-attribute pattern analysers relevant to GIS , 1994 .

[10]  Umeshwar Dayal,et al.  K-Harmonic Means - A Spatial Clustering Algorithm with Boosting , 2000, TSDM.

[11]  Vipin Kumar,et al.  Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.

[12]  Michalis Vazirgiannis,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. On Clustering Validation Techniques , 2022 .

[13]  Jeffrey S. Torguson,et al.  Cartography: Thematic Map Design , 1990 .

[14]  Wa Mackaness,et al.  Cartography thematic map design, 5th edition. , 2000 .

[15]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[16]  Jiawei Han,et al.  Spatial clustering methods in data mining , 2001 .

[17]  Tamal K. Dey Sample Based Geometric Modeling , 2003, Geometric and Algorithmic Aspects of Computer-Aided Design and Manufacturing.

[18]  Luciano da Fontoura Costa,et al.  Shape Analysis and Classification: Theory and Practice , 2000 .

[19]  Jiawei Han,et al.  Geographic Data Mining and Knowledge Discovery , 2001 .

[20]  Vladimir Estivill-Castro,et al.  Cluster Validity Using Support Vector Machines , 2003, DaWaK.

[21]  Jiawei Han,et al.  Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.

[22]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning with the Region Connection Calculus , 1997, GeoInformatica.

[23]  P. Burrough Principles of Geographical Information Systems for Land Resources Assessment , 1986 .

[24]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[25]  Tamal K. Dey,et al.  Delaunay triangulations approximate anchor hulls , 2005, SODA '05.

[26]  Jiawei Han,et al.  Efficient Polygon Amalgamation Methods for Spatial OLAP and Spatial Data Mining , 1999, SSD.

[27]  V. Estivill-Castro,et al.  Argument free clustering for large spatial point-data sets via boundary extraction from Delaunay Diagram , 2002 .

[28]  Jack Snoeyink,et al.  A One-Step Crust and Skeleton Extraction Algorithm , 2001, Algorithmica.

[29]  Martin Charlton,et al.  A Mark 1 Geographical Analysis Machine for the automated analysis of point data sets , 1987, Int. J. Geogr. Inf. Sci..

[30]  Ickjai Lee,et al.  Criteria on Proximity Graphs for Boundary Extraction and Spatial Clustering , 2001, PAKDD.

[31]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[32]  Vladimir Estivill-Castro,et al.  Discovering Associations in Spatial Data - An Efficient Medoid Based Approach , 1998, PAKDD.

[33]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[34]  Tamal K. Dey,et al.  Curve and Surface Reconstruction , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[35]  Raymond T. Ng,et al.  Finding Boundary Shape Matching Relationships in Spatial Data , 1997, SSD.

[36]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[37]  Ickjai Lee,et al.  Data Mining Techniques for Autonomous Exploration of Large Volumes of Geo-referenced Crime Data , 2001 .

[38]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[39]  Ki-Joune Li,et al.  A spatial data mining method by Delaunay triangulation , 1997, GIS '97.

[40]  Sunghee Choi,et al.  The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..

[41]  Sudipto Guha,et al.  CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.

[42]  Tamal K. Dey,et al.  Shape Segmentation and Matching with Flow Discretization , 2003, WADS.

[43]  M. Aldenderfer Cluster Analysis , 1984 .

[44]  Jiong Yang,et al.  STING+: an approach to active spatial data mining , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[45]  Waldir L. Roque,et al.  Constructing Approximate Voronoi Diagrams from Digital Images of Generalized Polygons and Circular Objects , 2003, WSCG.