Atomic-Resolution Simulations Predict a Transition State for Vesicle Fusion Defined by Contact of a Few Lipid Tails

Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins.

[1]  Kozlov Mm,et al.  On the Theory of Membrane Fusion. The Stalk Mechanism , 1984 .

[2]  F S Cohen,et al.  A specific point mutant at position 1 of the influenza hemagglutinin fusion peptide displays a hemifusion phenotype. , 1999, Molecular biology of the cell.

[3]  I. Morgan,et al.  Adult rat brain synaptic vesicles. II. Lipid composition. , 1973, Biochimica et biophysica acta.

[4]  Avishay Efrat,et al.  Point-like protrusion as a prestalk intermediate in membrane fusion pathway. , 2007, Biophysical journal.

[5]  Reinhard Lipowsky,et al.  Tension-induced fusion of bilayer membranes and vesicles , 2005, Nature materials.

[6]  R. Schneiter,et al.  Electrospray Ionization Tandem Mass Spectrometry (Esi-Ms/Ms) Analysis of the Lipid Molecular Species Composition of Yeast Subcellular Membranes Reveals Acyl Chain-Based Sorting/Remodeling of Distinct Molecular Species En Route to the Plasma Membrane , 1999, The Journal of cell biology.

[7]  Franca Fraternali,et al.  Plasticity of influenza haemagglutinin fusion peptides and their interaction with lipid bilayers. , 2005, Biophysical journal.

[8]  M. Müller,et al.  A new mechanism of model membrane fusion determined from Monte Carlo simulation. , 2002, Biophysical journal.

[9]  P. Bolhuis,et al.  Sampling the multiple folding mechanisms of Trp-cage in explicit solvent , 2006, Proceedings of the National Academy of Sciences.

[10]  M. Kozlov,et al.  Mechanics of membrane fusion , 2008, Nature Structural &Molecular Biology.

[11]  Peter M. Kasson,et al.  Ensemble molecular dynamics yields submillisecond kinetics and intermediates of membrane fusion , 2006, Proceedings of the National Academy of Sciences.

[12]  Tingting Wang,et al.  Productive hemifusion intermediates in fast vesicle fusion driven by neuronal SNAREs. , 2008, Biophysical journal.

[13]  J. Seelig,et al.  Effect of a single cis double bond on the structures of a phospholipid bilayer. , 1977, Biochemistry.

[14]  R. Macdonald,et al.  Membrane fusion due to dehydration by polyethylene glycol, dextran, or sucrose. , 1985, Biochemistry.

[15]  D. Siegel,et al.  Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. , 1993, Biophysical journal.

[16]  Vijay S. Pande,et al.  Screen Savers of the World Unite! , 2000, Science.

[17]  V. Pande,et al.  On the transition coordinate for protein folding , 1998 .

[18]  T. McIntosh,et al.  Influence of lipid composition on physical properties and peg-mediated fusion of curved and uncurved model membrane vesicles: "nature's own" fusogenic lipid bilayer. , 2001, Biochemistry.

[19]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[20]  R Llinás,et al.  Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. , 1981, Biophysical journal.

[21]  Marta K. Domanska,et al.  Single Vesicle Millisecond Fusion Kinetics Reveals Number of SNARE Complexes Optimal for Fast SNARE-mediated Membrane Fusion* , 2009, The Journal of Biological Chemistry.

[22]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[23]  Volker Knecht,et al.  Molecular dynamics simulations of lipid vesicle fusion in atomic detail. , 2007, Biophysical journal.

[24]  C. Dellago,et al.  Reaction coordinates of biomolecular isomerization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  F. Jensen,et al.  Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Jason E. Donald,et al.  Functional Analysis of the Transmembrane Domain in Paramyxovirus F Protein-Mediated Membrane Fusion , 2008, Journal of Molecular Biology.

[27]  M. Karplus,et al.  Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics , 1988 .

[28]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[29]  L. Tamm,et al.  Membrane fusion: a structural perspective on the interplay of lipids and proteins. , 2003, Current opinion in structural biology.

[30]  B. Lentz,et al.  Polymer-induced membrane fusion: potential mechanism and relation to cell fusion events. , 1994, Chemistry and physics of lipids.

[31]  J. Zimmerberg,et al.  The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. , 1995, Biophysical journal.

[32]  A Kusumi,et al.  Fast lipid disorientation at the onset of membrane fusion revealed by molecular dynamics simulations. , 2001, Biophysical journal.

[33]  E. Lindahl,et al.  Implementation of the CHARMM Force Field in GROMACS: Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction Sites, and Water Models. , 2010, Journal of chemical theory and computation.

[34]  G. Melikyan,et al.  The Energetics of Membrane Fusion from Binding, through Hemifusion, Pore Formation, and Pore Enlargement , 2004, The Journal of Membrane Biology.

[35]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[36]  Lukas K. Tamm,et al.  Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin , 2001, Nature Structural Biology.

[37]  Judith M. White,et al.  Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion , 1994, Cell.

[38]  Andreas Herrmann,et al.  Bilayer conformation of fusion peptide of influenza virus hemagglutinin: a molecular dynamics simulation study. , 2004, Biophysical journal.

[39]  Lin Yang,et al.  Observation of a Membrane Fusion Intermediate Structure , 2002, Science.

[40]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[41]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[42]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[43]  A. Lai,et al.  Fusion Peptide of Influenza Hemagglutinin Requires a Fixed Angle Boomerang Structure for Activity* , 2006, Journal of Biological Chemistry.

[44]  L M Zampighi,et al.  Conical electron tomography of a chemical synapse: vesicles docked to the active zone are hemi-fused. , 2006, Biophysical journal.

[45]  M. Kozlov,et al.  On the theory of membrane fusion. The stalk mechanism. , 1984, General physiology and biophysics.

[46]  Antoine M. van Oijen,et al.  Single-particle kinetics of influenza virus membrane fusion , 2008, Proceedings of the National Academy of Sciences.

[47]  Thomas B Woolf,et al.  Insights into the molecular mechanism of membrane fusion from simulation: evidence for the association of splayed tails. , 2003, Physical review letters.

[48]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[49]  Peter M. Kasson,et al.  Predicting Structure and Dynamics of Loosely-Ordered Protein Complexes: Influenza Hemagglutinin Fusion Peptide , 2006, Pacific Symposium on Biocomputing.

[50]  C. Cotman,et al.  Lipid composition of synaptic plasma membranes isolated from rat brain by zonal centrifugation. , 1969, Biochemistry.

[51]  Axel T. Brunger,et al.  Molecular mechanism of the synaptotagmin–SNARE interaction in Ca2+-triggered vesicle fusion , 2010, Nature Structural &Molecular Biology.

[52]  Michael R. Shirts,et al.  COMPUTING: Screen Savers of the World Unite! , 2000, Science.

[53]  Peter M. Kasson,et al.  Control of Membrane Fusion Mechanism by Lipid Composition: Predictions from Ensemble Molecular Dynamics , 2007, PLoS Comput. Biol..

[54]  Edwin R Chapman,et al.  SNARE-driven, 25-millisecond vesicle fusion in vitro. , 2005, Biophysical journal.

[55]  Benoît Roux,et al.  Molecular dynamics simulations of the influenza hemagglutinin fusion peptide in micelles and bilayers: conformational analysis of peptide and lipids. , 2005, Journal of molecular biology.

[56]  J. Segrest,et al.  Minimal size phosphatidylcholine vesicles: effects of radius of curvature on head group packing and conformation. , 1982, Biochemistry.

[57]  Siewert J Marrink,et al.  The mechanism of vesicle fusion as revealed by molecular dynamics simulations. , 2003, Journal of the American Chemical Society.

[58]  Mary Williard Elting,et al.  Rapid membrane fusion of individual virus particles with supported lipid bilayers. , 2007, Biophysical journal.

[59]  M. Kozlov,et al.  Membrane fusion: overcoming of the hydration barrier and local restructuring. , 1987, Journal of theoretical biology.

[60]  B. Lentz,et al.  Energetics of vesicle fusion intermediates: comparison of calculations with observed effects of osmotic and curvature stresses. , 2004, Biophysical journal.

[61]  Edwin R. Chapman,et al.  Synaptotagmin-Mediated Bending of the Target Membrane Is a Critical Step in Ca2+-Regulated Fusion , 2009, Cell.

[62]  M. Kozlov,et al.  How Synaptotagmin Promotes Membrane Fusion , 2007, Science.

[63]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[64]  R. Dutzler,et al.  Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel , 2009, Nature.