Few‐layer Black Phosphorous Catalyzes Radical Additions to Alkenes Faster than Low‐valence Metals

The substitution of catalytic metals by p‐block main elements has a tremendous impact not only in the fundamentals but also in the economic and ecological fingerprint of organic reactions. Here we show that few‐layer black phosphorous (FL‐BP), a recently discovered and now readily available 2D material, catalyzes different radical additions to alkenes with an initial turnover frequency (TOF0) up to two orders of magnitude higher than representative state‐of‐the‐art metal complex catalysts at room temperature. The corresponding electron‐rich BP intercalation compound (BPIC) KP6 shows a nearly twice TOF0 increase with respect to FL‐BP. This increase in catalytic activity respect to the neutral counterpart also occurs in other 2D materials (graphene vs. KC8) and metal complex catalysts (Fe0 vs. Fe2− carbon monoxide complexes). This reactive parallelism opens the door for cross‐fertilization between 2D materials and metal catalysts in organic synthesis.

[1]  M. Antonietti,et al.  Organic semiconductor photocatalyst can bifunctionalize arenes and heteroarenes , 2019, Science.

[2]  C. Paradisi,et al.  Radicals and Ions Formed in Plasma-Treated Organic Solvents: A Mechanistic Investigation to Rationalize the Enhancement of Electrospinnability of Polycaprolactone , 2019, Front. Chem..

[3]  Katharina Werbach,et al.  Lattice Opening upon Bulk Reductive Covalent Functionalization of Black Phosphorus , 2019, Angewandte Chemie.

[4]  H. Steinrück,et al.  Few layer 2D pnictogens catalyze the alkylation of soft nucleophiles with esters , 2019, Nature Communications.

[5]  Rebecca L. Melen Frontiers in molecular p-block chemistry: From structure to reactivity , 2019, Science.

[6]  C. Gadermaier,et al.  Monolayer black phosphorus by sequential wet-chemical surface oxidation , 2019, RSC advances.

[7]  N. López,et al.  Ensemble Design in Nickel Phosphide Catalysts for Alkyne Semi‐Hydrogenation , 2018, ChemCatChem.

[8]  S. Denmark,et al.  Enantioselective, Lewis Base-Catalyzed Carbosulfenylation of Alkenylboronates by 1,2-Boronate Migration. , 2018, Journal of the American Chemical Society.

[9]  H. García,et al.  A Water-Splitting Carbon Nitride Photoelectrochemical Cell with Efficient Charge Separation and Remarkably Low Onset Potential. , 2018, Angewandte Chemie.

[10]  B. Morandi,et al.  Efficient access to unprotected primary amines by iron-catalyzed aminochlorination of alkenes , 2018, Science.

[11]  F. Telesio,et al.  Polymer-Based Black Phosphorus (bP) Hybrid Materials by in Situ Radical Polymerization: An Effective Tool To Exfoliate bP and Stabilize bP Nanoflakes , 2018, Chemistry of materials : a publication of the American Chemical Society.

[12]  A. Corma,et al.  Generation and Reactivity of Electron-Rich Carbenes on the Surface of Catalytic Gold Nanoparticles. , 2018, Journal of the American Chemical Society.

[13]  Katharina Werbach,et al.  Exploring the Formation of Black Phosphorus Intercalation Compounds with Alkali Metals , 2017, Angewandte Chemie.

[14]  A. Görling,et al.  Noncovalent Functionalization and Charge Transfer in Antimonene , 2017, Angewandte Chemie.

[15]  C. Nevado,et al.  γ-Functionalizations of Amines through Visible-Light-Mediated, Redox-Neutral C-C Bond Cleavage. , 2017, Angewandte Chemie.

[16]  Peng Liu,et al.  Rhodium-Catalyzed Enantioselective Radical Addition of CX4 Reagents to Olefins. , 2017, Angewandte Chemie.

[17]  J. Maultzsch,et al.  Fundamental Insights into the Degradation and Stabilization of Thin Layer Black Phosphorus , 2017, Journal of the American Chemical Society.

[18]  M. Salmeron,et al.  The Birth of Nickel Phosphide Catalysts: Monitoring Phosphorus Insertion into Nickel , 2017 .

[19]  A. Corma,et al.  Partial Reduction and Selective Transfer of Hydrogen Chloride on Catalytic Gold Nanoparticles. , 2017, Angewandte Chemie.

[20]  A. Hirsch,et al.  Unifying Principles of the Reductive Covalent Graphene Functionalization. , 2017, Journal of the American Chemical Society.

[21]  A. Görling,et al.  Noncovalent Functionalization of Black Phosphorus. , 2016, Angewandte Chemie.

[22]  A. Fürstner Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion , 2016, ACS central science.

[23]  A. Clark Copper Catalyzed Atom Transfer Radical Cyclization Reactions , 2016 .

[24]  S. Yadav,et al.  Compounds with Low‐Valent p‐Block Elements for Small Molecule Activation and Catalysis , 2016 .

[25]  Richard Martel,et al.  Photooxidation and quantum confinement effects in exfoliated black phosphorus. , 2015, Nature materials.

[26]  M. Pumera,et al.  Voltammetry of Layered Black Phosphorus: Electrochemistry of Multilayer Phosphorene , 2015 .

[27]  Jun Wang,et al.  Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics , 2015, Nature Communications.

[28]  L. Wirtz,et al.  Raman spectroscopy of graphite intercalation compounds: Charge transfer, strain, and electron–phonon coupling in graphene layers , 2014 .

[29]  H. García,et al.  Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation , 2014, Nature Communications.

[30]  A. Corma,et al.  Theoretical and Experimental Insights into the Origin of the Catalytic Activity of Subnanometric Gold Clusters : Attempts to Predict Reactivity with Clusters and Nanoparticles of Gold MERCEDES BORONAT , , 2013 .

[31]  C. Nevado,et al.  Copper-catalyzed one-pot trifluoromethylation/aryl migration/desulfonylation and C(sp2)-N bond formation of conjugated tosyl amides. , 2013, Journal of the American Chemical Society.

[32]  Manuel Alcarazo,et al.  Metallfreie Hydrierung von elektronenarmen Allenen und Alkenen , 2012 .

[33]  M. Alcarazo,et al.  Metal-free hydrogenation of electron-poor allenes and alkenes. , 2012, Angewandte Chemie.

[34]  A. Corma,et al.  Iron‐Catalysed Markovnikov Hydrothiolation of Styrenes , 2012 .

[35]  M. Alcarazo,et al.  Fullerenes as neutral carbon-based Lewis acids. , 2012, Angewandte Chemie.

[36]  Manuel Alcarazo,et al.  Fullerene als neutrale kohlenstoffbasierte Lewis-Säuren† , 2012 .

[37]  A. Corma,et al.  Nickel phosphide nanocatalysts for the chemoselective hydrogenation of alkynes , 2012 .

[38]  P. Renaud,et al.  Metal-Free, Radical Addition to Alkenes via Desulfitative Chlorine Atom Transfer , 2011 .

[39]  Tatsuya Kato,et al.  Intermolecular vibrational spectra of C3v CXY3 Molecular Liquids, CHCl3, CHBr3, CFBr3, and CBrCl3. , 2011, The journal of physical chemistry. A.

[40]  A. Corma,et al.  Gold-catalyzed carbon-heteroatom bond-forming reactions. , 2011, Chemical reviews.

[41]  T. Pintauer Catalyst Regeneration in Transition-Metal-Mediated Atom-Transfer Radical Addition (ATRA) and Cyclization (ATRC) Reactions , 2010 .

[42]  Alois Fürstner,et al.  The promise and challenge of iron-catalyzed cross coupling. , 2008, Accounts of chemical research.

[43]  A. Fürstner,et al.  Preparation, structure, and reactivity of nonstabilized organoiron compounds. Implications for iron-catalyzed cross coupling reactions. , 2008, Journal of the American Chemical Society.

[44]  B. C. Gilbert,et al.  Gold nanoparticle-initiated free radical oxidations and halogen abstractions. , 2007, Organic & biomolecular chemistry.

[45]  P. Mussini,et al.  Electrochemical reduction of benzyl halides at a silver electrode , 2006 .

[46]  A. Fürstner,et al.  Unusual structure and reactivity of a homoleptic "super-ate" complex of iron: implications for Grignard additions, cross-coupling reactions, and the Kharasch deconjugation. , 2006, Angewandte Chemie.

[47]  W. Petz,et al.  Preparation, Spectroscopic Properties, and Crystal Structures of Fe2(CO)6(μ-CO)(μ-CF2)2, Fe2(CO)6(μ-CO)2(μ-CF2), and Fe2(CO)6(μ-CF2)(PPh3)2 - Theoretical Studies of Methylenicvs. Carbonyl Bridges in Diiron Complexes , 2001 .

[48]  J. Savéant,et al.  Electron Transfer and Bond Breaking. Examples of Passage from a Sequential to a Concerted Mechanism in the Electrochemical Reductive Cleavage of Arylmethyl Halides , 1992 .

[49]  J. Ros,et al.  Carboncarbon bond formation at diiron centres VII. New routes to anionic alkenyl-bridged diiron complexes, and reactions of the latter with propargyl chloride☆ , 1991 .

[50]  D. T. Sawyer,et al.  Effects of media and electrode materials on the electrochemical reduction of dioxygen , 1982 .

[51]  H. Hogeveen IRON CARBONYL PROMOTED ADDITIONS OF PERHALOMETHANES TO CARBON-CARBON DOUBLE-BONDS , 1980 .

[52]  M. Mastragostino,et al.  Anodic oxidation of halides in anhydrous acetic acid , 1973 .

[53]  T. Slater,et al.  Electron spin resonance spin trapping studies on the photolytic generation of halocarbon radicals. , 1986, Chemico-biological interactions.