暂无分享,去创建一个
[1] Robert Price,et al. A useful theorem for nonlinear devices having Gaussian inputs , 1958, IRE Trans. Inf. Theory.
[2] G. Bonnet. Transformations des signaux aléatoires a travers les systèmes non linéaires sans mémoire , 1964 .
[3] Roderick J. A. Little,et al. Statistical Analysis with Missing Data , 1988 .
[4] R. J. Williams,et al. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.
[5] R. Zemel. A minimum description length framework for unsupervised learning , 1994 .
[6] Geoffrey E. Hinton,et al. The Helmholtz Machine , 1995, Neural Computation.
[7] Michael I. Jordan,et al. Mean Field Theory for Sigmoid Belief Networks , 1996, J. Artif. Intell. Res..
[8] Brendan J. Frey,et al. Variational Learning in Nonlinear Gaussian Belief Networks , 1999, Neural Computation.
[9] P. Dayan. Helmholtz Machines and Wake-Sleep Learning , 2000 .
[10] Tom Minka,et al. A family of algorithms for approximate Bayesian inference , 2001 .
[11] Stan Lipovetsky,et al. Latent Variable Models and Factor Analysis , 2001, Technometrics.
[12] Matthew J. Beal. Variational algorithms for approximate Bayesian inference , 2003 .
[13] Neil D. Lawrence,et al. Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..
[14] H. Rue,et al. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .
[15] Manfred Opper,et al. The Variational Gaussian Approximation Revisited , 2009, Neural Computation.
[16] Pascal Vincent,et al. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..
[17] Malik Magdon-Ismail,et al. Approximating the Covariance Matrix of GMMs with Low-Rank Perturbations , 2010, IDEAL.
[18] Radford M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .
[19] Hugo Larochelle,et al. The Neural Autoregressive Distribution Estimator , 2011, AISTATS.
[20] Alex Graves,et al. Practical Variational Inference for Neural Networks , 2011, NIPS.
[21] Yee Whye Teh,et al. Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.
[22] Ahn. Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring , 2012 .
[23] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[24] Pascal Vincent,et al. Generalized Denoising Auto-Encoders as Generative Models , 2013, NIPS.
[25] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[26] Daan Wierstra,et al. Deep AutoRegressive Networks , 2013, ICML.
[27] Hugo Larochelle,et al. A Deep and Tractable Density Estimator , 2013, ICML.