The Regulatory Repertoire of Pseudomonas aeruginosa AmpC ß-Lactamase Regulator AmpR Includes Virulence Genes

In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. In addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, we compared the transcriptional profile generated using DNA microarrays of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought, with the deletion of ampR influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Other virulence mechanisms including biofilm formation and QS-regulated acute virulence factors are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the microarray data. Further, using a Caenorhabditis elegans model, we demonstrate that a functional AmpR is required for P. aeruginosa pathogenicity. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. Further, we show differential regulation of other transcriptional regulators and sigma factors by AmpR, accounting for the extensive AmpR regulon. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating biofilm formation, a chronic infection phenotype. Unraveling this complex regulatory circuit will provide a better understanding of the bacterial response to antibiotics and how the organism coordinately regulates a myriad of virulence factors in response to antibiotic exposure.

[1]  H. Schweizer,et al.  Evidence of MexT-Independent Overexpression of MexEF-OprN Multidrug Efflux Pump of Pseudomonas aeruginosa in Presence of Metabolic Stress , 2011, PloS one.

[2]  K. Mathee,et al.  Co-regulation of β-lactam resistance, alginate production and quorum sensing in Pseudomonas aeruginosa , 2011, Journal of medical microbiology.

[3]  A. Filloux,et al.  Two-component regulatory systems in Pseudomonas aeruginosa: an intricate network mediating fimbrial and efflux pump gene expression , 2011, Molecular microbiology.

[4]  Robert E. W. Hancock,et al.  The Sensor Kinase CbrA Is a Global Regulator That Modulates Metabolism, Virulence, and Antibiotic Resistance in Pseudomonas aeruginosa , 2010, Journal of bacteriology.

[5]  K. Mathee,et al.  Pseudomonas aeruginosa β-lactamase induction requires two permeases, AmpG and AmpP , 2010, BMC Microbiology.

[6]  Taiji Nakae,et al.  Transcriptional regulation of the mexEF-oprN multidrug efflux pump operon by MexT and an unidentified repressor in nfxC-type mutant of Pseudomonas aeruginosa. , 2010, FEMS microbiology letters.

[7]  A. Huletsky,et al.  ampG Gene of Pseudomonas aeruginosa and Its Role in β-Lactamase Expression , 2010, Antimicrobial Agents and Chemotherapy.

[8]  T. Tolker-Nielsen,et al.  An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. , 2010, FEMS immunology and medical microbiology.

[9]  A. Oliver,et al.  NagZ Inactivation Prevents and Reverts β-Lactam Resistance, Driven by AmpD and PBP 4 Mutations, in Pseudomonas aeruginosa , 2010, Antimicrobial Agents and Chemotherapy.

[10]  S. M. Robinson,et al.  Role of bacteriocins in mediating interactions of bacterial isolates taken from cystic fibrosis patients , 2010, Microbiology.

[11]  K. Mathee,et al.  Beta‐lactam antibiotics: from antibiosis to resistance and bacteriology , 2010, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[12]  D. Hassett,et al.  Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. , 2009, The American journal of pathology.

[13]  K. Kerr,et al.  Pseudomonas aeruginosa: a formidable and ever-present adversary. , 2009, The Journal of hospital infection.

[14]  H. Schellhorn,et al.  Role of RpoS in Virulence of Pathogens , 2009, Infection and Immunity.

[15]  B. Bassler,et al.  Bacterial quorum-sensing network architectures. , 2009, Annual review of genetics.

[16]  Nancy D. Hanson,et al.  Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms , 2009, Clinical Microbiology Reviews.

[17]  A. Hauser The type III secretion system of Pseudomonas aeruginosa: infection by injection , 2009, Nature Reviews Microbiology.

[18]  S. Lory,et al.  The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs , 2009, Molecular microbiology.

[19]  K. Mathee,et al.  Comparative transcriptome analyses of Pseudomonas aeruginosa , 2009, Human Genomics.

[20]  S. Lory,et al.  Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA , 2009, Molecular microbiology.

[21]  H. Nikaido,et al.  Mechanisms of RND multidrug efflux pumps. , 2009, Biochimica et biophysica acta.

[22]  A. Buckling,et al.  Cooperation and virulence of clinical Pseudomonas aeruginosa populations , 2009, Proceedings of the National Academy of Sciences.

[23]  D. Ohman,et al.  Use of cell wall stress to characterize σ22 (AlgT/U) activation by regulated proteolysis and its regulon in Pseudomonas aeruginosa , 2009, Molecular microbiology.

[24]  A. Oliver,et al.  Inactivation of the Glycoside Hydrolase NagZ Attenuates Antipseudomonal β-Lactam Resistance in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[25]  G. Phan,et al.  Efflux Unbalance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients , 2009, Antimicrobial Agents and Chemotherapy.

[26]  A. Oliver,et al.  β-Lactam Resistance Response Triggered by Inactivation of a Nonessential Penicillin-Binding Protein , 2009, PLoS pathogens.

[27]  Ying Xu,et al.  DOOR: a database for prokaryotic operons , 2008, Nucleic Acids Res..

[28]  Raymond Lo,et al.  Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes , 2008, Nucleic Acids Res..

[29]  S. Maddocks,et al.  Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. , 2008, Microbiology.

[30]  Z. Temesgen,et al.  Lung infections after cancer chemotherapy. , 2008, The Lancet. Oncology.

[31]  N. Hanson,et al.  Role of ampD Homologs in Overproduction of AmpC in Clinical Isolates of Pseudomonas aeruginosa , 2008, Antimicrobial Agents and Chemotherapy.

[32]  Tracy K. Teal,et al.  Redox-Active Antibiotics Control Gene Expression and Community Behavior in Divergent Bacteria , 2008, Science.

[33]  F. Ausubel,et al.  Attenuation of Pseudomonas aeruginosa virulence by medicinal plants in a Caenorhabditis elegans model system. , 2008, Journal of medical microbiology.

[34]  T. Mah,et al.  Involvement of a Novel Efflux System in Biofilm-Specific Resistance to Antibiotics , 2008, Journal of bacteriology.

[35]  B. Birren,et al.  Dynamics of Pseudomonas aeruginosa genome evolution , 2008, Proceedings of the National Academy of Sciences.

[36]  M. Avison,et al.  Induction of L1 and L2 β-Lactamase Production in Stenotrophomonas maltophilia Is Dependent on an AmpR-Type Regulator , 2008, Antimicrobial Agents and Chemotherapy.

[37]  É. Potvin,et al.  Sigma factors in Pseudomonas aeruginosa. , 2008, FEMS microbiology reviews.

[38]  J. Helden,et al.  Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules , 2008, Nature Protocols.

[39]  M. Maciá,et al.  Pseudomonas aeruginosa RsmA Plays an Important Role during Murine Infection by Influencing Colonization, Virulence, Persistence, and Pulmonary Inflammation , 2007, Infection and Immunity.

[40]  Ying Xu,et al.  Operon prediction using both genome-specific and general genomic information , 2006, Nucleic acids research.

[41]  Erliang Zeng,et al.  IEM: an algorithm for iterative enhancement of motifs using comparative genomics data. , 2007, Computational systems bioinformatics. Computational Systems Bioinformatics Conference.

[42]  Stephen Lory,et al.  Interstrain transfer of the large pathogenicity island (PAPI-1) of Pseudomonas aeruginosa , 2006, Proceedings of the National Academy of Sciences.

[43]  M. Wolfgang,et al.  Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system , 2006, Molecular microbiology.

[44]  L. Eberl,et al.  Two GacA-Dependent Small RNAs Modulate the Quorum-Sensing Response in Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[45]  Stephen Lory,et al.  A Virulence Locus of Pseudomonas aeruginosa Encodes a Protein Secretion Apparatus , 2006, Science.

[46]  S. Diggle,et al.  The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. , 2006, Environmental microbiology.

[47]  A. K. Hansen,et al.  The galactophilic lectin (PA-IL, gene LecA) from Pseudomonas aeruginosa. Its binding requirements and the localization of lectin receptors in various mouse tissues. , 2006, Microbial pathogenesis.

[48]  F. O'Gara,et al.  The Posttranscriptional Regulator RsmA Plays a Role in the Interaction between Pseudomonas aeruginosa and Human Airway Epithelial Cells by Positively Regulating the Type III Secretion System , 2006, Infection and Immunity.

[49]  A. Oliver,et al.  Stepwise Upregulation of the Pseudomonas aeruginosa Chromosomal Cephalosporinase Conferring High-Level β-Lactam Resistance Involves Three AmpD Homologues , 2006, Antimicrobial Agents and Chemotherapy.

[50]  E. Greenberg,et al.  A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. , 2006, International journal of medical microbiology : IJMM.

[51]  H. Schweizer,et al.  A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. , 2006, Journal of microbiological methods.

[52]  J. Colmer-Hamood,et al.  mvaT mutation modifies the expression of the Pseudomonas aeruginosa multidrug efflux operon mexEF-oprN. , 2006, FEMS microbiology letters.

[53]  Clinical,et al.  Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : Approved standard , 2006 .

[54]  C. Koh,et al.  Pseudomonas aeruginosa AmpR Is a Global Transcriptional Factor That Regulates Expression of AmpC and PoxB β-Lactamases, Proteases, Quorum Sensing, and Other Virulence Factors , 2005, Antimicrobial Agents and Chemotherapy.

[55]  William E Bentley,et al.  Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide , 2005, BMC Genomics.

[56]  Shouguang Jin,et al.  PtrB of Pseudomonas aeruginosa Suppresses the Type III Secretion System under the Stress of DNA Damage , 2005, Journal of bacteriology.

[57]  Michelle D. Brazas,et al.  Ciprofloxacin Induction of a Susceptibility Determinant in Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[58]  J. Mekalanos,et al.  ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  S. Diggle,et al.  The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. , 2005, Microbiology.

[60]  Cécile Gigot-Bonnefoy,et al.  Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. , 2005, FEMS microbiology letters.

[61]  K. Hughes,et al.  Type III secretion: a secretory pathway serving both motility and virulence (Review) , 2005, Molecular membrane biology.

[62]  R. MacLaren,et al.  National Surveillance of Antimicrobial Resistance in Pseudomonas aeruginosa Isolates Obtained from Intensive Care Unit Patients from 1993 to 2002 , 2004, Antimicrobial Agents and Chemotherapy.

[63]  D. Hassett,et al.  The role of pyocyanin in Pseudomonas aeruginosa infection. , 2004, Trends in molecular medicine.

[64]  D. Hassett,et al.  The Transcriptional Regulator AlgR Controls Cyanide Production in Pseudomonas aeruginosa , 2004, Journal of bacteriology.

[65]  R. Kolter,et al.  Two Genetic Loci Produce Distinct Carbohydrate-Rich Structural Components of the Pseudomonas aeruginosa Biofilm Matrix , 2004, Journal of bacteriology.

[66]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[67]  S. Lory,et al.  Pseudomonas aeruginosa regulates flagellin expression as part of a global response to airway fluid from cystic fibrosis patients. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[68]  P. Bennett,et al.  Role of the 'cre/blr-tag' DNA sequence in regulation of gene expression by the Aeromonas hydrophila beta-lactamase regulator, BlrA. , 2004, The Journal of antimicrobial chemotherapy.

[69]  M. Schuster,et al.  The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing , 2004, Molecular microbiology.

[70]  Roberto Kolter,et al.  Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms , 2003, Molecular microbiology.

[71]  R. Manfredi,et al.  Pseudomonas spp. complications in patients with HIV disease: An eight-year clinical and microbiological survey , 2000, European Journal of Epidemiology.

[72]  K. Timmis,et al.  A general system to integratelacZ fusions into the chromosomes of gram-negative eubacteria: regulation of thePm promoter of theTOL plasmid studied with all controlling elements in monocopy , 1992, Molecular and General Genetics MGG.

[73]  Koki Matsumoto Role of bacterial proteases in pseudomonal and serratial keratitis , 2004, Biological chemistry.

[74]  C. Keel,et al.  RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA‐dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0 , 2003, Molecular microbiology.

[75]  E. Sonnleitner,et al.  Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. , 2003, Microbial pathogenesis.

[76]  Stephen Lory,et al.  A four‐tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa , 2003, Molecular microbiology.

[77]  Søren Molin,et al.  Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms , 2003, Molecular microbiology.

[78]  E. Greenberg,et al.  Identification, Timing, and Signal Specificity of Pseudomonas aeruginosa Quorum-Controlled Genes: a Transcriptome Analysis , 2003, Journal of bacteriology.

[79]  J. Davies,et al.  Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. , 2002, Paediatric respiratory reviews.

[80]  Y. Michel-Briand,et al.  The pyocins of Pseudomonas aeruginosa. , 2002, Biochimie.

[81]  C. Blumer,et al.  Regulatory RNA as Mediator in GacA/RsmA-Dependent Global Control of Exoproduct Formation in Pseudomonas fluorescens CHA0 , 2002, Journal of bacteriology.

[82]  L. Gallagher,et al.  Pseudomonas aeruginosa PAO1 KillsCaenorhabditis elegans by Cyanide Poisoning , 2001, Journal of bacteriology.

[83]  R. Ramphal,et al.  Evolution, incidence, and susceptibility of bacterial bloodstream isolates from 519 bone marrow transplant patients. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[84]  P M Bennett,et al.  Escherichia coli CreBC Is a Global Regulator of Gene Expression That Responds to Growth in Minimal Media* , 2001, The Journal of Biological Chemistry.

[85]  H. Ceri,et al.  Multidrug Efflux Pumps: Expression Patterns and Contribution to Antibiotic Resistance in Pseudomonas aeruginosa Biofilms , 2001, Antimicrobial Agents and Chemotherapy.

[86]  A. Neely,et al.  Type III secretion/intoxication system important in virulence of Pseudomonas aeruginosa infections in burns. , 2001, Burns : journal of the International Society for Burn Injuries.

[87]  Y Comeau,et al.  Initiation of Biofilm Formation byPseudomonas aeruginosa 57RP Correlates with Emergence of Hyperpiliated and Highly Adherent Phenotypic Variants Deficient in Swimming, Swarming, and Twitching Motilities , 2001, Journal of bacteriology.

[88]  E. Bouza,et al.  Catheter-Related Infections: Diagnosis and Intravascular Treatment , 2001, Journal of chemotherapy.

[89]  X. Li,et al.  Influence of the MexA-MexB-oprM multidrug efflux system on expression of the MexC-MexD-oprJ and MexE-MexF-oprN multidrug efflux systems in Pseudomonas aeruginosa. , 2000, The Journal of antimicrobial chemotherapy.

[90]  S. Diggle,et al.  The Pseudomonas aeruginosa Lectins PA-IL and PA-IIL Are Controlled by Quorum Sensing and by RpoS , 2000, Journal of bacteriology.

[91]  T. Nakae,et al.  Variation of the mexT gene, a regulator of the MexEF-oprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. , 2000, FEMS microbiology letters.

[92]  H. Mori,et al.  The R‐type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F‐type is related to lambda phage , 2000, Molecular microbiology.

[93]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[94]  J. Alverdy,et al.  The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. , 2000, Annals of surgery.

[95]  Mary Jane Ferraro,et al.  Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : approved standard , 2000 .

[96]  N. Hanson,et al.  Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. , 1999, Current pharmaceutical design.

[97]  T. Köhler,et al.  Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[98]  D. Hassett,et al.  Effect of rpoS Mutation on the Stress Response and Expression of Virulence Factors in Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[99]  H. Yoneyama,et al.  Resistance to β-Lactam Antibiotics inPseudomonas aeruginosa Due to Interplay between the MexAB-OprM Efflux Pump and β-Lactamase , 1999, Antimicrobial Agents and Chemotherapy.

[100]  R. Hancock,et al.  Negative Regulation of the Pseudomonas aeruginosa Outer Membrane Porin OprD Selective for Imipenem and Basic Amino Acids , 1999, Antimicrobial Agents and Chemotherapy.

[101]  P. Nordmann,et al.  Cloning, Sequence Analyses, Expression, and Distribution of ampC-ampR from Morganella morganii Clinical Isolates , 1999, Antimicrobial Agents and Chemotherapy.

[102]  F. Ausubel,et al.  Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[103]  N. Masuda,et al.  Interplay between Chromosomal β-Lactamase and the MexAB-OprM Efflux System in Intrinsic Resistance to β-Lactams inPseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[104]  Frederick M. Ausubel,et al.  Molecular Mechanisms of Bacterial Virulence Elucidated Using a Pseudomonas aeruginosa– Caenorhabditis elegans Pathogenesis Model , 1999, Cell.

[105]  H. Yoneyama,et al.  Resistance to beta-lactam antibiotics in Pseudomonas aeruginosa due to interplay between the MexAB-OprM efflux pump and beta-lactamase. , 1999, Antimicrobial agents and chemotherapy.

[106]  N. Masuda,et al.  Interplay between chromosomal beta-lactamase and the MexAB-OprM efflux system in intrinsic resistance to beta-lactams in Pseudomonas aeruginosa. , 1999, Antimicrobial Agents and Chemotherapy.

[107]  V. Kapatral,et al.  Cellular function of elastase in Pseudomonas aeruginosa: role in the cleavage of nucleoside diphosphate kinase and in alginate synthesis , 1998, Molecular microbiology.

[108]  G. Bonfiglio,et al.  Mechanisms of beta-lactam resistance amongst Pseudomonas aeruginosa isolated in an Italian survey. , 1998, The Journal of antimicrobial chemotherapy.

[109]  D. Giedroc,et al.  The RNA Molecule CsrB Binds to the Global Regulatory Protein CsrA and Antagonizes Its Activity in Escherichia coli * , 1997, The Journal of Biological Chemistry.

[110]  J. Frère,et al.  Cytosolic Intermediates for Cell Wall Biosynthesis and Degradation Control Inducible β-Lactam Resistance in Gram-Negative Bacteria , 1997, Cell.

[111]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[112]  D. Livermore,et al.  Mechanisms of resistance to beta-lactam antibiotics amongst Pseudomonas aeruginosa isolates collected in the UK in 1993. , 1995, Journal of medical microbiology.

[113]  H. Schweizer,et al.  An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. , 1995, Gene.

[114]  D. Ohman,et al.  Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation , 1994, Journal of bacteriology.

[115]  D. Martin,et al.  Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to sigma E and stress response , 1994, Journal of bacteriology.

[116]  D. Wozniak,et al.  Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT , 1994, Journal of bacteriology.

[117]  K. Poole,et al.  Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon , 1993, Journal of bacteriology.

[118]  S. Busby,et al.  Investigation of the Pseudomonas aeruginosa ampR gene and its role at the chromosomal ampC beta-lactamase promoter. , 1993, FEMS microbiology letters.

[119]  D. Ohman,et al.  Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. , 1993, The Journal of biological chemistry.

[120]  R. Proenca,et al.  The Pseudomonas cepacia 249 chromosomal penicillinase is a member of the AmpC family of chromosomal beta-lactamases , 1993, Antimicrobial Agents and Chemotherapy.

[121]  T. Shinomiya,et al.  Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes , 1993, Journal of bacteriology.

[122]  M. Schell Molecular biology of the LysR family of transcriptional regulators. , 1993, Annual review of microbiology.

[123]  D. Martin,et al.  Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[124]  M. Nakamura,et al.  Effect of proteolytic enzyme on experimental infection of mice with Pseudomonas aeruginosa. , 1992, The Journal of veterinary medical science.

[125]  M. Francia,et al.  Nucleotide sequence of the ampC-ampR region from the chromosome of Yersinia enterocolitica , 1992, Antimicrobial Agents and Chemotherapy.

[126]  T. Sawada,et al.  Role of elastase as a virulence factor in experimental Pseudomonas aeruginosa infection in mice. , 1992, Microbial pathogenesis.

[127]  S. Ho,et al.  Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. , 2013, BioTechniques.

[128]  S. Busby,et al.  Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. , 1990, The Biochemical journal.

[129]  I. Crawford,et al.  Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications , 1990, Journal of bacteriology.

[130]  H. Nikaido,et al.  Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa , 1990, Antimicrobial Agents and Chemotherapy.

[131]  J. Waitz Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically , 1990 .

[132]  P. Gallagher,et al.  Pseudomonas bacteremia in a community teaching hospital, 1980-1984. , 1989, Reviews of infectious diseases.

[133]  S. Lindquist,et al.  Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC beta-lactamase gene , 1989, Journal of bacteriology.

[134]  S. Lindquist,et al.  Genetic basis of induction and overproduction of chromosomal class I beta-lactamase in nonfastidious gram-negative bacilli. , 1988, Reviews of infectious diseases.

[135]  R. Auckenthaler,et al.  Resistance occurring after fluoroquinolone therapy of experimental Pseudomonas aeruginosa peritonitis , 1987, Antimicrobial Agents and Chemotherapy.

[136]  S. Lindquist,et al.  Inactivation of the ampD gene causes semiconstitutive overproduction of the inducible Citrobacter freundii beta-lactamase , 1987, Journal of bacteriology.

[137]  S T Cole,et al.  Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. , 1986, The EMBO journal.

[138]  S. Lindquist,et al.  Induction of chromosomal β-lactamase expression in enterobacteria , 1986 .

[139]  S. Normark,et al.  Contribution of Chromosomal β-Lactamases to β-Lactam Resistance in Enterobacteria , 1986 .

[140]  S. Normark,et al.  Contribution of chromosomal beta-lactamases to beta-lactam resistance in enterobacteria. , 1986, Reviews of infectious diseases.

[141]  S. Lindquist,et al.  Chromosomal beta-lactam resistance in enterobacteria. , 1986, Scandinavian journal of infectious diseases. Supplementum.

[142]  H. Blöcker,et al.  Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. , 1986, Gene.

[143]  S. Lindquist,et al.  Induction of chromosomal beta-lactamase expression in enterobacteria. , 1986, The Journal of antimicrobial chemotherapy.

[144]  B. Iglewski,et al.  The contribution of exoproducts to virulence of Pseudomonas aeruginosa. , 1986, Canadian journal of microbiology.

[145]  S. Normark,et al.  ampC beta-lactamase hyperproduction in Escherichia coli: natural ampicillin resistance generated by horizontal chromosomal DNA transfer from Shigella. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[146]  S. Cryz,et al.  Isolation and characterization of Pseudomonas aeruginosa PAO mutant that produces altered elastase , 1980, Journal of bacteriology.

[147]  P. Liu,et al.  Extracellular toxins of Pseudomonas aeruginosa. , 1974, Journal of Infectious Diseases.

[148]  T. Hennessey Inducible β-lactamase in Enterobacter. , 1967 .

[149]  T. Hennessey Inducible beta-lactamase in Enterobacter. , 1967, Journal of general microbiology.