A fast routability- and performance-driven droplet routing algorithm for digital microfluidic biochips

As the microfluidic technology advances, the design complexity of digital microfluidic biochips (DMFB) are expected to explode in the near future. One of the most critical challenges for DMFB design is the droplet routing problem, which schedules the movement of each droplet in a time-multiplexed manner. In this paper, we propose a fast routability- and performance-driven droplet router for DMFBs. The main contributions of our work are: (1) a global moving vector analysis for constructing preferred routing tracks to minimize the number of used unit cells; (2) an entropy-based equation to determine the routing order of droplets for better routability; (3) a routing compaction technique by dynamic programming to minimize the latest arrival time of droplets. Experimental results show that our algorithm achieves 100% routing completion for all test cases on three Benchmark Suites while the previous algorithms are not. In addition to routability, compared with the state-of-the-art high-performance routing on the Benchmark Suite I [3], the experimental results still show that our algorithm performed better in runtime by 40%, reduced the latest arrival time by 21%, reduced the used unit cells by 10%. Furthermore, experiment results on Benchmark Suite II and III are also very promising. Based on the evaluation of three Benchmark Suites, our algorithm demonstrates the efficiency and robustness of handling complex droplet routing problem over the existing algorithms.

[1]  Shih-Kang Fan,et al.  Manipulation of multiple droplets on N/spl times/M grid by cross-reference EWOD driving scheme and pressure-contact packaging , 2003, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE.

[2]  Yao-Wen Chang,et al.  BioRoute: a network-flow based routing algorithm for digital microfluidic biochips , 2007, 2007 IEEE/ACM International Conference on Computer-Aided Design.

[3]  Karl-Friedrich Böhringer,et al.  Modeling and Controlling Parallel Tasks in Droplet-Based Microfluidic Systems , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[4]  Krishnendu Chakrabarty,et al.  Automated design of digital microfluidic lab-on-chip under pin-count constraints , 2008, ISPD '08.

[5]  R. Fair,et al.  Electrowetting-based actuation of droplets for integrated microfluidics. , 2002, Lab on a chip.

[6]  Krishnendu Chakrabarty,et al.  Integrated Droplet Routing in the Synthesis of Microfluidic Biochips , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[7]  Fei Su,et al.  Microfluidics-Based Biochips: Technology Issues, Implementation Platforms, and Design-Automation Challenges , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[8]  David Z. Pan,et al.  A High-Performance Droplet Routing Algorithm for Digital Microfluidic Biochips , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[9]  Mark K. Goldberg,et al.  Performance Characterization of a Reconfigurable Planar-Array Digital Microfluidic System , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[10]  Tamal Mukherjee,et al.  Design automation issues for biofluidic microchips , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[11]  S. Quake,et al.  Microfluidic Large-Scale Integration , 2002, Science.

[12]  Fei Su,et al.  Droplet Routing in the Synthesis of Digital Microfluidic Biochips , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[13]  C.H. Mastrangelo,et al.  Enhanced electro-osmotic pumping with liquid bridge and field effect flow rectification , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[14]  S. Cho,et al.  Towards digital microfluidic circuits: creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).