E � cient Planning in MDPs by Small Backups

E cient planning plays a crucial role in model-based reinforcement learning. Traditionally, the main planning operation is a full backup based on the current estimates of the successor states. Consequently, its computation time is proportional to the number of successor states. In this paper, we introduce a new planning backup that uses only the current value of a single successor state and has a computation time independent of the number of successor states. This new backup, which we call a small backup, opens the door to a new class of model-based reinforcement learning methods that exhibit much finer control over their planning process than traditional methods. We empirically demonstrate that this increased flexibility allows for more e cient planning by showing that an implementation of prioritized sweeping based on small backups achieves a substantial performance improvement over classical implementations.