On the third-body perturbations of high-altitude orbits

[1]  J. Laskar,et al.  Explicit expansion of the three-body disturbing function for arbitrary eccentricities and inclinations , 2010, 1008.2947.

[2]  C. Pardini,et al.  Long-term dynamical evolution of high area-to-mass ratio debris released into high earth orbits , 2010 .

[3]  R. Russell,et al.  Mission design through averaging of perturbed Keplerian systems: the paradigm of an Enceladus orbiter , 2010 .

[4]  Florent Deleflie,et al.  Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence , 2009 .

[5]  Alessandro Rossi,et al.  Resonant dynamics of Medium Earth Orbits: space debris issues , 2008 .

[6]  J. Palacián Dynamics of a satellite orbiting a planet with an inhomogeneous gravitational field , 2007 .

[7]  Todd A. Ely,et al.  Eccentricity Impact on East-West Stationkeeping for Global Positioning System Class Orbits , 2002 .

[8]  D. Steichen An averaging method to study the motion of lunar artificial satellites I: Disturbing Function , 1998 .

[9]  Pierre Exertier,et al.  Semi-analytical theory of the mean orbital motion. , 1995 .

[10]  C. Osácar,et al.  Decomposition of functions for elliptic orbits , 1994 .

[11]  Kenneth R. Meyer,et al.  Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .

[12]  Gilles Métris Théorie du Mouvement du Satellite Artificiel : Développement des Equations du Mouvement Moyen - Application à l'Etude des Longues Périodes - , 1991 .

[13]  G. Métris Mean values of particular functions in the elliptic motion , 1991 .

[14]  Thomas Jerome Kelly A note on first-order normalizations of perturbed Keplerian systems , 1989 .

[15]  Bruce R. Miller,et al.  The critical inclination in artificial satellite theory , 1986 .

[16]  L. W. Early,et al.  A theory for the short-periodic motion due to the tesseral harmonic gravity field , 1981 .

[17]  M. Slutsky The first-order short-periodic motion of an artificial satellite due to third body perturbations - Numerical evaluation , 1981 .

[18]  S. Collins Long term prediction of high altitude orbits , 1981 .

[19]  W. D. Mcclain,et al.  A recursively formulated first-order semianalytic artificial satellite theory based on the generalized method of averaging. Volume 1: The generalized method of averaging applied to the artificial satellite problem , 1977 .

[20]  G. Giacaglia Lunar perturbations of artificial satellites of the earth , 1973 .

[21]  William Hamilton Jefferys,et al.  Equivalence of the perturbation theories of Hori and Deprit , 1970 .

[22]  G. S. Gedeon,et al.  Tesseral resonance effects on satellite orbits , 1969 .

[23]  André Deprit,et al.  Canonical transformations depending on a small parameter , 1969 .

[24]  Yoshibide Kozai,et al.  Second-order solution of artificial satellite theory without air drag , 1962 .

[25]  Dirk Brouwer,et al.  SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG , 1959 .

[26]  Y. Kozai On the Effects of the Sun and the Moon upon the Motion of a Close-Earth Satellite , 1959 .

[27]  M. A. Vashkov'yak A numerical-analytical method for studying the orbital evolution of distant planetary satellites , 2005 .

[28]  R. A. Gick,et al.  Long-term evolution of navigation satellite orbits: GPS/GLONASS/GALILEO , 2004 .

[29]  R. Broucke Long-Term Third-Body Effects via Double Averaging , 2003 .

[30]  A. Prado Third-Body Perturbation in Orbits Around Natural Satellites , 2003 .

[31]  Oliver Montenbruck,et al.  Satellite Orbits: Models, Methods and Applications , 2000 .

[32]  K. Howell,et al.  Dynamics of artificial satellite orbits with tesseral resonances including the effects of luni- solar perturbations , 1997 .

[33]  André Deprit,et al.  Delaunay normalisations , 1982 .

[34]  Andrew Joseph Green,et al.  Orbit determination and prediction processes for low altitude satellites , 1979 .

[35]  R. Broucke,et al.  On the formulation of the gravitational potential in terms of equinoctial variables , 1975 .