On the third-body perturbations of high-altitude orbits
暂无分享,去创建一个
[1] J. Laskar,et al. Explicit expansion of the three-body disturbing function for arbitrary eccentricities and inclinations , 2010, 1008.2947.
[2] C. Pardini,et al. Long-term dynamical evolution of high area-to-mass ratio debris released into high earth orbits , 2010 .
[3] R. Russell,et al. Mission design through averaging of perturbed Keplerian systems: the paradigm of an Enceladus orbiter , 2010 .
[4] Florent Deleflie,et al. Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence , 2009 .
[5] Alessandro Rossi,et al. Resonant dynamics of Medium Earth Orbits: space debris issues , 2008 .
[6] J. Palacián. Dynamics of a satellite orbiting a planet with an inhomogeneous gravitational field , 2007 .
[7] Todd A. Ely,et al. Eccentricity Impact on East-West Stationkeeping for Global Positioning System Class Orbits , 2002 .
[8] D. Steichen. An averaging method to study the motion of lunar artificial satellites I: Disturbing Function , 1998 .
[9] Pierre Exertier,et al. Semi-analytical theory of the mean orbital motion. , 1995 .
[10] C. Osácar,et al. Decomposition of functions for elliptic orbits , 1994 .
[11] Kenneth R. Meyer,et al. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .
[12] Gilles Métris. Théorie du Mouvement du Satellite Artificiel : Développement des Equations du Mouvement Moyen - Application à l'Etude des Longues Périodes - , 1991 .
[13] G. Métris. Mean values of particular functions in the elliptic motion , 1991 .
[14] Thomas Jerome Kelly. A note on first-order normalizations of perturbed Keplerian systems , 1989 .
[15] Bruce R. Miller,et al. The critical inclination in artificial satellite theory , 1986 .
[16] L. W. Early,et al. A theory for the short-periodic motion due to the tesseral harmonic gravity field , 1981 .
[17] M. Slutsky. The first-order short-periodic motion of an artificial satellite due to third body perturbations - Numerical evaluation , 1981 .
[18] S. Collins. Long term prediction of high altitude orbits , 1981 .
[19] W. D. Mcclain,et al. A recursively formulated first-order semianalytic artificial satellite theory based on the generalized method of averaging. Volume 1: The generalized method of averaging applied to the artificial satellite problem , 1977 .
[20] G. Giacaglia. Lunar perturbations of artificial satellites of the earth , 1973 .
[21] William Hamilton Jefferys,et al. Equivalence of the perturbation theories of Hori and Deprit , 1970 .
[22] G. S. Gedeon,et al. Tesseral resonance effects on satellite orbits , 1969 .
[23] André Deprit,et al. Canonical transformations depending on a small parameter , 1969 .
[24] Yoshibide Kozai,et al. Second-order solution of artificial satellite theory without air drag , 1962 .
[25] Dirk Brouwer,et al. SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG , 1959 .
[26] Y. Kozai. On the Effects of the Sun and the Moon upon the Motion of a Close-Earth Satellite , 1959 .
[27] M. A. Vashkov'yak. A numerical-analytical method for studying the orbital evolution of distant planetary satellites , 2005 .
[28] R. A. Gick,et al. Long-term evolution of navigation satellite orbits: GPS/GLONASS/GALILEO , 2004 .
[29] R. Broucke. Long-Term Third-Body Effects via Double Averaging , 2003 .
[30] A. Prado. Third-Body Perturbation in Orbits Around Natural Satellites , 2003 .
[31] Oliver Montenbruck,et al. Satellite Orbits: Models, Methods and Applications , 2000 .
[32] K. Howell,et al. Dynamics of artificial satellite orbits with tesseral resonances including the effects of luni- solar perturbations , 1997 .
[33] André Deprit,et al. Delaunay normalisations , 1982 .
[34] Andrew Joseph Green,et al. Orbit determination and prediction processes for low altitude satellites , 1979 .
[35] R. Broucke,et al. On the formulation of the gravitational potential in terms of equinoctial variables , 1975 .