Weight Enumerators of Codes
暂无分享,去创建一个
[1] N. J. A. Sloane. Is there a (72, 36) d = 16 self-dual code? (Corresp.) , 1973, IEEE Trans. Inf. Theory.
[2] N. J. A. Sloane,et al. Weight enumerators of self-orthogonal codes , 1974, Discret. Math..
[3] J. Macwilliams. A theorem on the distribution of weights in a systematic code , 1963 .
[4] N. J. A. Sloane,et al. Good self dual codes exist , 1972, Discret. Math..
[5] H. Weyl. The Classical Groups , 1939 .
[6] John H. Conway,et al. A Group of Order 8,315,553,613,086,720,000 , 1969 .
[7] Elwyn R. Berlekamp,et al. Weight distributions of the cosets of the (32, 6) Reed-Muller code , 1972, IEEE Trans. Inf. Theory.
[8] Leonard Eugene Dickson,et al. Theory and applications of finite groups , 1916 .
[9] M. Karlin,et al. New binary coding results by circulants , 1969, IEEE Trans. Inf. Theory.
[10] Neil J. A. Sloane,et al. The MacWilliams identities for nonlinear codes , 1972 .
[11] N. J. A. Sloane,et al. On the Existence of a Projective Plane of Order 10 , 1973, J. Comb. Theory, Ser. A.
[12] N. J. A. Sloane,et al. New family of single-error correcting codes , 1970, IEEE Trans. Inf. Theory.
[13] Vera Pless,et al. Self-Dual Codes Over GF(q) Satisfy a Modified Varshamov-Gilbert Bound , 1973, Inf. Control..
[14] John H. Conway,et al. A characterisation of Leech's lattice , 1969 .
[15] N. J. A. Sloane,et al. Weight enumerator for second-order Reed-Muller codes , 1970, IEEE Trans. Inf. Theory.
[16] Andrew M. Gleason,et al. WEIGHT POLYNOMIALS OF SELF-DUAL CODES AND THE MacWILLIAMS IDENTITIES , 1970 .
[17] N. J. A. Sloane,et al. Gleason's theorem on self-dual codes , 1972, IEEE Trans. Inf. Theory.
[18] W. Burnside,et al. Theory of Groups of Finite Order , 1909 .
[19] N. J. A. Sloane,et al. An Upper Bound for Self-Dual Codes , 1973, Inf. Control..
[20] Tadao Kasami,et al. On the weight structure of Reed-Muller codes , 1970, IEEE Trans. Inf. Theory.
[21] Neil J. A. Sloane,et al. Upper bounds for modular forms, lattices, and codes , 1975 .
[22] Walter Feit,et al. A self-dual even (96, 48, 16) code (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[23] W. W. Peterson,et al. Error-Correcting Codes. , 1962 .
[24] Vera Pless,et al. A classification of self-orthogonal codes over GF(2) , 1972, Discret. Math..
[25] H. Mattson,et al. New 5-designs , 1969 .
[26] M. Hall,et al. Computers in Algebra and Number Theory , 1971 .
[27] N. J. A. Sloane,et al. Generalizations of Gleason's theorem on weight enumerators of self-dual codes , 1972, IEEE Trans. Inf. Theory.
[28] N. J. A. Sloane,et al. On the invariants of a linear group of order 336 , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.
[29] James L. Massey,et al. Review of 'Error-Correcting Codes, 2nd edn.' (Peterson, W. W., and Weldon, E. J., Jr.; 1972) , 1973, IEEE Trans. Inf. Theory.
[30] Vera Pless,et al. On a new family of symmetry codes and related new five-designs , 1969 .
[31] Elwyn R. Berlekamp,et al. Algebraic coding theory , 1984, McGraw-Hill series in systems science.
[32] Vera Pless,et al. Symmetry Codes over GF(3) and New Five-Designs , 1972, J. Comb. Theory A.
[33] G. C. Shephard,et al. Finite Unitary Reflection Groups , 1954, Canadian Journal of Mathematics.
[34] Jacobus H. van Lint,et al. Coding Theory , 1971 .
[35] N. Jacobson. Lectures In Abstract Algebra , 1951 .
[36] Harry Dym,et al. Fourier series and integrals , 1972 .
[37] N. Sloane,et al. Sphere Packings and Error-Correcting Codes , 1971, Canadian Journal of Mathematics.
[38] Charles F. Hobbs. Approximating the performance of a binary group code (Corresp.) , 1965, IEEE Trans. Inf. Theory.