Weight Enumerators of Codes

A tutorial paper dealing with the weight enumerators of codes, especially of self-dual codes. We prove MACWILLIAMS’ theorem on the weight distribution of the dual code, Gleason’s theorem on the weight distribution of a self-dual code, some generalizations of this theorem, and then use Gleason’s theorem to show that very good self-dual codes do not exist.

[1]  N. J. A. Sloane Is there a (72, 36) d = 16 self-dual code? (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[2]  N. J. A. Sloane,et al.  Weight enumerators of self-orthogonal codes , 1974, Discret. Math..

[3]  J. Macwilliams A theorem on the distribution of weights in a systematic code , 1963 .

[4]  N. J. A. Sloane,et al.  Good self dual codes exist , 1972, Discret. Math..

[5]  H. Weyl The Classical Groups , 1939 .

[6]  John H. Conway,et al.  A Group of Order 8,315,553,613,086,720,000 , 1969 .

[7]  Elwyn R. Berlekamp,et al.  Weight distributions of the cosets of the (32, 6) Reed-Muller code , 1972, IEEE Trans. Inf. Theory.

[8]  Leonard Eugene Dickson,et al.  Theory and applications of finite groups , 1916 .

[9]  M. Karlin,et al.  New binary coding results by circulants , 1969, IEEE Trans. Inf. Theory.

[10]  Neil J. A. Sloane,et al.  The MacWilliams identities for nonlinear codes , 1972 .

[11]  N. J. A. Sloane,et al.  On the Existence of a Projective Plane of Order 10 , 1973, J. Comb. Theory, Ser. A.

[12]  N. J. A. Sloane,et al.  New family of single-error correcting codes , 1970, IEEE Trans. Inf. Theory.

[13]  Vera Pless,et al.  Self-Dual Codes Over GF(q) Satisfy a Modified Varshamov-Gilbert Bound , 1973, Inf. Control..

[14]  John H. Conway,et al.  A characterisation of Leech's lattice , 1969 .

[15]  N. J. A. Sloane,et al.  Weight enumerator for second-order Reed-Muller codes , 1970, IEEE Trans. Inf. Theory.

[16]  Andrew M. Gleason,et al.  WEIGHT POLYNOMIALS OF SELF-DUAL CODES AND THE MacWILLIAMS IDENTITIES , 1970 .

[17]  N. J. A. Sloane,et al.  Gleason's theorem on self-dual codes , 1972, IEEE Trans. Inf. Theory.

[18]  W. Burnside,et al.  Theory of Groups of Finite Order , 1909 .

[19]  N. J. A. Sloane,et al.  An Upper Bound for Self-Dual Codes , 1973, Inf. Control..

[20]  Tadao Kasami,et al.  On the weight structure of Reed-Muller codes , 1970, IEEE Trans. Inf. Theory.

[21]  Neil J. A. Sloane,et al.  Upper bounds for modular forms, lattices, and codes , 1975 .

[22]  Walter Feit,et al.  A self-dual even (96, 48, 16) code (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[23]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[24]  Vera Pless,et al.  A classification of self-orthogonal codes over GF(2) , 1972, Discret. Math..

[25]  H. Mattson,et al.  New 5-designs , 1969 .

[26]  M. Hall,et al.  Computers in Algebra and Number Theory , 1971 .

[27]  N. J. A. Sloane,et al.  Generalizations of Gleason's theorem on weight enumerators of self-dual codes , 1972, IEEE Trans. Inf. Theory.

[28]  N. J. A. Sloane,et al.  On the invariants of a linear group of order 336 , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  James L. Massey,et al.  Review of 'Error-Correcting Codes, 2nd edn.' (Peterson, W. W., and Weldon, E. J., Jr.; 1972) , 1973, IEEE Trans. Inf. Theory.

[30]  Vera Pless,et al.  On a new family of symmetry codes and related new five-designs , 1969 .

[31]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[32]  Vera Pless,et al.  Symmetry Codes over GF(3) and New Five-Designs , 1972, J. Comb. Theory A.

[33]  G. C. Shephard,et al.  Finite Unitary Reflection Groups , 1954, Canadian Journal of Mathematics.

[34]  Jacobus H. van Lint,et al.  Coding Theory , 1971 .

[35]  N. Jacobson Lectures In Abstract Algebra , 1951 .

[36]  Harry Dym,et al.  Fourier series and integrals , 1972 .

[37]  N. Sloane,et al.  Sphere Packings and Error-Correcting Codes , 1971, Canadian Journal of Mathematics.

[38]  Charles F. Hobbs Approximating the performance of a binary group code (Corresp.) , 1965, IEEE Trans. Inf. Theory.