Carbon based materials for electronic bio-sensing

Bio-sensing represents one of the most attractive applications of carbon material based electronic devices; nevertheless, the complete integration of bioactive transducing elements still represents a major challenge, particularly in terms of preserving biological function and specificity while maintaining the sensor's electronic performance. This review highlights recent advances in the realization of field-effect transistor (FET) based sensors that comprise a bio-receptor within the FET channel. A birds-eye view will be provided of the most promising classes of active layers as well as different device architectures and methods of fabrication. Finally, strategies for interfacing bio-components with organic or carbon nano-structured electronic active layers are reported.

[1]  I. Willner,et al.  Biomaterials integrated with electronic elements: en route to bioelectronics. , 2001, Trends in biotechnology.

[2]  Carmen Bartic,et al.  Monitoring pH with organic-based field-effect transistors , 2002 .

[3]  Emily M. Heckman,et al.  DNA Photonics [Deoxyribonucleic Acid] , 2005 .

[4]  L. Torsi,et al.  Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics , 1995, Science.

[5]  V. Rao,et al.  Polymer composite-based OFET sensor with improved sensitivity towards nitro based explosive vapors , 2010 .

[6]  Tobin J. Marks,et al.  σ-π molecular dielectric multilayers for low-voltage organic thin-film transistors , 2005 .

[7]  Lain-Jong Li,et al.  Integrating carbon nanotubes and lipid bilayer for biosensing. , 2010, Biosensors & bioelectronics.

[8]  J C Middleton,et al.  Synthetic biodegradable polymers as orthopedic devices. , 2000, Biomaterials.

[9]  J. Fréchet,et al.  Organic semiconducting oligomers for use in thin film transistors. , 2007, Chemical reviews.

[10]  M. T. Martínez,et al.  Electronic anabolic steroid recognition with carbon nanotube field-effect transistors. , 2010, ACS nano.

[11]  W. Choi,et al.  Synthesis of Graphene and Its Applications: A Review , 2010 .

[12]  H. Xie,et al.  Electric-field-assisted growth of functionalized poly(3,4-ethylenedioxythiophene) nanowires for label-free protein detection. , 2009, Small.

[13]  Donghyun Kim,et al.  Carbon nanotube-based dual-mode biosensor for electrical and surface plasmon resonance measurements. , 2010, Nano letters.

[14]  A. Napolitano,et al.  Oxidative degradation of melanins to pyrrole acids: A model study , 1995 .

[15]  Taechang An,et al.  Real-time, step-wise, electrical detection of protein molecules using dielectrophoretically aligned SWNT-film FET aptasensors. , 2010, Lab on a chip.

[16]  Yuyuan Tian,et al.  Graphene field-effect transistors: electrochemical gating, interfacial capacitance, and biosensing applications. , 2010, Chemistry, an Asian journal.

[17]  Nipun Misra,et al.  Carbon nanotube transistor controlled by a biological ion pump gate. , 2010, Nano letters.

[18]  S. Roth,et al.  Transparent and flexible carbon nanotube/polyaniline pH sensors , 2006 .

[19]  George G Malliaras,et al.  Chemical and biological sensors based on organic thin-film transistors , 2005, Analytical and bioanalytical chemistry.

[20]  Oh Seok Kwon,et al.  Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses. , 2009, Angewandte Chemie.

[21]  James G. Grote,et al.  Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric , 2006 .

[22]  Piero Cosseddu,et al.  Towards the textile transistor : Assembly and characterization of an organic field effect transistor with a cylindrical geometry , 2006 .

[23]  Hyeonseok Yoon,et al.  Field-effect-transistor sensor based on enzyme-functionalized polypyrrole nanotubes for glucose detection. , 2008, The journal of physical chemistry. B.

[24]  Z. Bao,et al.  Organic Thin‐Film Transistors Fabricated on Resorbable Biomaterial Substrates , 2010, Advanced materials.

[25]  Kenneth S Johnson,et al.  Chemical sensor networks for the aquatic environment. , 2007, Chemical reviews.

[26]  B. J. Venton,et al.  Review: Carbon nanotube based electrochemical sensors for biomolecules. , 2010, Analytica chimica acta.

[27]  A. Wanekaya,et al.  Towards biosensors based on conducting polymer nanowires , 2009, Analytical and bioanalytical chemistry.

[28]  G. Whitesides,et al.  Foldable Printed Circuit Boards on Paper Substrates , 2010 .

[29]  Olle Inganäs,et al.  Woven Electrochemical Transistors on Silk Fibers , 2011, Advanced materials.

[30]  Muhammad N. Khan,et al.  Nanomaterials as Analytical Tools for Genosensors , 2010, Sensors.

[31]  Ashok Mulchandani,et al.  Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors , 2010 .

[32]  N. Mohanty,et al.  Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. , 2008, Nano letters.

[33]  J. Jane,et al.  Biodegradable plastic made from soybean products. II. Effects of cross-linking and cellulose incorporation on mechanical properties and water absorption , 1994 .

[34]  Ping Liu,et al.  High-performance semiconducting polythiophenes for organic thin-film transistors. , 2004, Journal of the American Chemical Society.

[35]  P. Barquinha,et al.  High-Performance Flexible Hybrid Field-Effect Transistors Based on Cellulose Fiber Paper , 2008, IEEE Electron Device Letters.

[36]  J McGinness,et al.  Amorphous Semiconductor Switching in Melanins , 1974, Science.

[37]  Michael A. Haase,et al.  Recent Progress in Organic Electronics: Materials, Devices, and Processes , 2004 .

[38]  R. Stoltenberg,et al.  Ambipolar, high performance, acene-based organic thin film transistors. , 2008, Journal of the American Chemical Society.

[39]  Anna-Lena Idzko,et al.  Biocompatibility studies of functionalized regioregular poly(3-hexylthiophene) layers for sensing applications. , 2010, Macromolecular bioscience.

[40]  Zhenan Bao,et al.  Water-stable organic transistors and their application in chemical and biological sensors , 2008, Proceedings of the National Academy of Sciences.

[41]  George G. Malliaras,et al.  Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors , 2007 .

[42]  Luisa Torsi,et al.  Multi-parameter gas sensors based on organic thin-film-transistors , 2000 .

[43]  Devendra Kumar,et al.  Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications , 2009 .

[44]  Zhenan Bao,et al.  Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility , 1996 .

[45]  Zhenan Bao,et al.  Flexible, plastic transistor-based chemical sensors , 2009 .

[46]  Dago M. de Leeuw,et al.  Organic field-effect transistor-based biosensors functionalized with protein receptors , 2010 .

[47]  D. Youn,et al.  Fabrication and Characterization of an OTFT‐Based Biosensor Using a Biotinylated F8T2 Polymer , 2009 .

[48]  Luisa Torsi,et al.  A sensitivity-enhanced field-effect chiral sensor. , 2008, Nature materials.

[49]  R. A. McGill,et al.  Micropreconcentrator for Enhanced Trace Detection of Explosives and Chemical Agents , 2006, IEEE Sensors Journal.

[50]  Vivek Subramanian,et al.  Printable polythiophene gas sensor array for low-cost electronic noses , 2006 .

[51]  B. Liedberg,et al.  Aligned carbon nanotubes on quartz substrate for liquid gated biosensing. , 2010, Biosensors & bioelectronics.

[52]  Zhixiang Wei,et al.  Conducting polymer nanostructures and their application in biosensors. , 2010, Journal of colloid and interface science.

[53]  B. Servet,et al.  Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers , 1993 .

[54]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[55]  Anees A. Ansari,et al.  Prospects of Nanotechnology in Clinical Immunodiagnostics , 2010, Sensors.

[56]  John A Rogers,et al.  Silicon electronics on silk as a path to bioresorbable, implantable devices. , 2009, Applied physics letters.

[57]  S Berry An extremely interesting conference. , 2001, Trends in biotechnology.

[58]  Jia Zhang,et al.  Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors , 2010, Sensors.

[59]  H. Uehata,et al.  Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. , 2000, Circulation.

[60]  J. Jang,et al.  A Novel Sensor Platform Based on Aptamer‐Conjugated Polypyrrole Nanotubes for Label‐Free Electrochemical Protein Detection , 2008, Chembiochem : a European journal of chemical biology.

[61]  Zhenan Bao,et al.  Electronic sensing of vapors with organic transistors , 2001 .

[62]  D. Noort,et al.  Biomonitoring of exposure to chemical warfare agents: a review. , 2002, Toxicology and applied pharmacology.

[63]  Lakshminarayan K. Jagannathan,et al.  Label-free low-cost disposable DNA hybridization detection systems using organic TFTs , 2007, 2007 IEEE International Electron Devices Meeting.

[64]  Alexander Star,et al.  Electronic Detection of Specific Protein Binding Using Nanotube FET Devices , 2003 .

[65]  Tobin J Marks,et al.  Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics. , 2005, Journal of the American Chemical Society.

[66]  Carmen Bartic,et al.  Field-effect detection of chemical species with hybrid organic/inorganic transistors , 2003 .

[67]  Peng Chen,et al.  Electrical Detection of DNA Hybridization with Single‐Base Specificity Using Transistors Based on CVD‐Grown Graphene Sheets , 2010, Advanced materials.

[68]  Joseph Miragliotta,et al.  Hydroxy-terminated organic semiconductor-based field-effect transistors for phosphonate vapor detection. , 2007, Journal of the American Chemical Society.

[69]  L. Torsi,et al.  Interface and gate bias dependence responses of sensing organic thin-film transistors. , 2005, Biosensors & bioelectronics.

[70]  Franco Cacialli,et al.  Functional supramolecular architectures : for organic electronics and nanotechnology , 2011 .

[71]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[72]  Jeong In Han,et al.  Organic TFT array on a paper substrate , 2004 .

[73]  Huangxian Ju,et al.  Nanotubes in biosensing. , 2010, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[74]  Jiri Janata,et al.  Conducting polymers in electronic chemical sensors , 2003, Nature materials.

[75]  A. Gelperin,et al.  Integration and Response of Organic Electronics with Aqueous Microfluidics , 2002 .

[76]  Kenzo Maehashi,et al.  Label-Free Electrical Detection Using Carbon Nanotube-Based Biosensors , 2009, Sensors.

[77]  Shosuke Ito,et al.  A Chemist's View of Melanogenesis , 2003 .

[78]  S. Mannsfeld,et al.  Influence of Molecular Structure and Film Properties on the Water-Stability and Sensor Characteristics of Organic Transistors , 2008 .

[79]  S. P. Tiwari,et al.  Explosive vapor sensor using poly (3-hexylthiophene) and CuII tetraphenylporphyrin composite based organic field effect transistors , 2008 .

[80]  John A. Rogers,et al.  Nonphotolithographic fabrication of organic transistors with micron feature sizes , 1998 .

[81]  Raoul Schroeder,et al.  High‐Performance Organic Transistors Using Solution‐Processed Nanoparticle‐Filled High‐k Polymer Gate Insulators , 2005 .

[82]  Zhenan Bao,et al.  In Situ, Label‐Free DNA Detection Using Organic Transistor Sensors , 2010, Advanced materials.

[83]  Robert Langer,et al.  Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. , 2009, Biomaterials.

[84]  James G. Grote,et al.  Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric , 2007 .

[85]  Peng Chen,et al.  Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. , 2010, ACS nano.

[86]  H. Dai,et al.  Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery , 2009, Nano research.

[87]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[88]  Zhenan Bao,et al.  Organic Field-Effect Transistors , 2007 .

[89]  Zakya H. Kafafi,et al.  Flexible organic photovoltaics using conducting polymer electrodes , 2005 .

[90]  Charles M Lieber,et al.  Graphene and nanowire transistors for cellular interfaces and electrical recording. , 2010, Nano letters.

[91]  S. P. Tiwari,et al.  Determining ionizing radiation using sensors based on organic semiconducting material , 2009 .

[92]  H. Sirringhaus,et al.  Integrated optoelectronic devices based on conjugated polymers , 1998, Science.

[93]  John E Anthony,et al.  Functionalized acenes and heteroacenes for organic electronics. , 2006, Chemical reviews.

[94]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[95]  Y. Ohno,et al.  Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. , 2009, Nano letters.

[96]  Y. Bellaïche,et al.  Cell division orientation and planar cell polarity pathways. , 2009, Seminars in cell & developmental biology.

[97]  Donghoon Choi,et al.  High-mobility bio-organic field effect transistors with photoreactive DNAs as gate insulators , 2010 .

[98]  K. Stevenson,et al.  High‐Resolution Characterization of Pentacene/Polyaniline Interfaces in Thin‐Film Transistors , 2006 .

[99]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[100]  D. M. Leeuw,et al.  Optimization of the charge transport in poly(phenylene vinylene) derivatives by processing and chemical modification , 2005 .

[101]  Lin Gan,et al.  Chemical functionalization of single-walled carbon nanotube field-effect transistors as switches and sensors , 2010 .

[102]  C. M. Li,et al.  Nanoelectronic biosensors based on CVD grown graphene. , 2010, Nanoscale.

[103]  Ersin Emre Oren,et al.  Threshold voltage control in organic thin film transistors with dielectric layer modified by a genetically engineered polypeptide , 2010 .