Perfect powers from products of terms in Lucas sequences
暂无分享,去创建一个
[1] T. N. Shorey,et al. Diophantine equations with products of consecutive terms in Lucas sequences , 2005 .
[2] M. Mignotte,et al. ON PERFECT POWERS IN LUCAS SEQUENCES , 2005 .
[3] M. Mignotte,et al. Sur les nombres de Fibonacci de la forme qkyp , 2004 .
[4] Maurice Mignotte,et al. Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell equation , 2004, Compositio Mathematica.
[5] M. Mignotte,et al. Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers , 2004, math/0403046.
[6] Guillaume Hanrot,et al. Existence of Primitive Divisors of Lucas and Lehmer Numbers , 2001 .
[7] M. Mignotte,et al. On the Diophantine equation (xn - 1)/(x-1) = yq , 2000 .
[8] M. Mignotte,et al. Sur l'équation diophantienne , 1999 .
[9] P. Ribenboim. Pell numbers, squares and cubes , 1999, Publicationes mathematicae (Debrecen).
[10] T. N. Shorey,et al. On the Diophantine equation $ax^{2t}+bx^ty+cy^2=d$ and pure powers in recurrence sequences. , 1983 .
[11] A. Pethö. Perfect powers in second order linear recurrences , 1982 .
[12] Kai Wang. On a theorem of S. Chowla , 1982 .
[13] J. Cohn. Squares in some recurrent sequences. , 1972 .
[14] Yuan Ping-zhi. On Square-classes in Lucas Sequences , 2006 .
[15] P. Ribenboim. The terms Cx^h (h>=3) in Lucas sequences , 2003 .
[16] P. Ribenboim. An Algorithm to Determine the Points with Integral Coordinates in Certain Elliptic Curves , 1999 .
[17] T. N. Shorey,et al. Integers with identical digits , 1989 .
[18] Neville Robbins. ON FIBONACCI NUMBERS WHICH ARE POWERS: I I , 1983 .
[19] K. Inkeri. On the diophantine equation $α(x^n - 1)/(x - 1) = y^m$ , 1972 .