Perfect powers from products of terms in Lucas sequences

Suppose that is a Lucas sequence, and suppose that l 1, … , lt are primes. We show that the equation has only finitely many solutions. Moreover, we explain a practical method of solving these equations. For example, if is the Fibonacci sequence, then we solve the equation under the restrictions: p is prime and m < p.

[1]  T. N. Shorey,et al.  Diophantine equations with products of consecutive terms in Lucas sequences , 2005 .

[2]  M. Mignotte,et al.  ON PERFECT POWERS IN LUCAS SEQUENCES , 2005 .

[3]  M. Mignotte,et al.  Sur les nombres de Fibonacci de la forme qkyp , 2004 .

[4]  Maurice Mignotte,et al.  Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell equation , 2004, Compositio Mathematica.

[5]  M. Mignotte,et al.  Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers , 2004, math/0403046.

[6]  Guillaume Hanrot,et al.  Existence of Primitive Divisors of Lucas and Lehmer Numbers , 2001 .

[7]  M. Mignotte,et al.  On the Diophantine equation (xn - 1)/(x-1) = yq , 2000 .

[8]  M. Mignotte,et al.  Sur l'équation diophantienne , 1999 .

[9]  P. Ribenboim Pell numbers, squares and cubes , 1999, Publicationes mathematicae (Debrecen).

[10]  T. N. Shorey,et al.  On the Diophantine equation $ax^{2t}+bx^ty+cy^2=d$ and pure powers in recurrence sequences. , 1983 .

[11]  A. Pethö Perfect powers in second order linear recurrences , 1982 .

[12]  Kai Wang On a theorem of S. Chowla , 1982 .

[13]  J. Cohn Squares in some recurrent sequences. , 1972 .

[14]  Yuan Ping-zhi On Square-classes in Lucas Sequences , 2006 .

[15]  P. Ribenboim The terms Cx^h (h>=3) in Lucas sequences , 2003 .

[16]  P. Ribenboim An Algorithm to Determine the Points with Integral Coordinates in Certain Elliptic Curves , 1999 .

[17]  T. N. Shorey,et al.  Integers with identical digits , 1989 .

[18]  Neville Robbins ON FIBONACCI NUMBERS WHICH ARE POWERS: I I , 1983 .

[19]  K. Inkeri On the diophantine equation $α(x^n - 1)/(x - 1) = y^m$ , 1972 .