High intrinsic mobility and ultrafast carrier dynamics in multilayer metal-dichalcogenideMoS2

The ultimate limitations on carrier mobilities in metal dichalcogenides, and the dynamics associated with carrier relaxation, are unclear. We present measurements of the frequency-dependent conductivity of multilayer dichalcogenide MoS2 by optical-pump terahertz-probe spectroscopy. We find mobilities in this material approaching 4200 cm2/Vs at low temperatures. The temperature dependence of scattering indicates that the mobility, an order of magnitude larger than previously reported for MoS2, is intrinsically limited by acoustic phonon scattering at THz frequencies. Our measurements of carrier relaxation reveal picosecond cooling times followed by recombination lasting tens of nanoseconds and dominated by Auger scattering into defects. Our results provide a useful context in which to understand and evaluate the performance of MoS2-based electronic and optoelectronic devices.

[1]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[2]  J. Shan,et al.  Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. , 2013, Nano letters.

[3]  B. L. Evans,et al.  Optical absorption and dispersion in molybdenum disulphide , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  Liangmo Mei,et al.  Broadband Few‐Layer MoS2 Saturable Absorbers , 2014, Advanced materials.

[5]  Xiaofeng Qian,et al.  Strain-engineered artificial atom as a broad-spectrum solar energy funnel , 2012, Nature Photonics.

[6]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[7]  Hugen Yan,et al.  Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. , 2013, Nano letters.

[8]  C. D. Walle,et al.  Effects of strain on band structure and effective masses in MoS$_2$ , 2012 .

[9]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[10]  Michael S. Fuhrer,et al.  High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects , 2012, 1212.6292.

[11]  B. Jonker,et al.  Valley polarization and intervalley scattering in monolayer MoS$_{2}$ , 2012 .

[12]  Jens Kattge,et al.  A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms , 2014, Nature Communications.

[13]  P M Campbell,et al.  Chemical vapor sensing with monolayer MoS2. , 2013, Nano letters.

[14]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[15]  J. Gilman,et al.  Nanotechnology , 2001 .

[16]  M. Terrones,et al.  Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2 , 2013, 1301.2813.

[17]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[18]  R. Fivaz,et al.  Mobility of Charge Carriers in Semiconducting Layer Structures , 1967 .

[19]  J. Luck,et al.  The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models , 1990 .

[20]  MAT , 2020, Encyclopedic Dictionary of Archaeology.

[21]  Thomas Mueller,et al.  Mechanisms of photoconductivity in atomically thin MoS2. , 2014, Nano letters.

[22]  T. Korn,et al.  Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.

[23]  C. Schmuttenmaer,et al.  Theory for determination of the low-frequency time-dependent response function in liquids using time-resolved terahertz pulse spectroscopy , 1999 .

[24]  D. Jena,et al.  Charge Scattering and Mobility in Atomically Thin Semiconductors , 2013, 1310.7157.

[25]  F. Zahid,et al.  A generic tight-binding model for monolayer, bilayer and bulk MoS2 , 2013, 1304.0074.

[26]  F. Guinea,et al.  Effect of point defects on the optical and transport properties of mos2 and ws2 , 2014, 1404.1934.

[27]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[28]  Farhan Rana,et al.  Absorption of light by excitons and trions in monolayers of metal dichalcogenide Mo S 2 : Experiments and theory , 2014, 1402.0263.

[29]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[30]  J. He,et al.  Charge carrier dynamics in bulk MoS2 crystal studied by transient absorption microscopy , 2013, 1303.0749.

[31]  G. Pike ac Conductivity of Scandium Oxide and a New Hopping Model for Conductivity , 1972 .

[32]  Matthew C. Beard,et al.  Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy , 2000 .

[33]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[34]  Rolf Landauer,et al.  The Electrical Resistance of Binary Metallic Mixtures , 1952 .

[35]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[36]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[37]  Siddharth Rajan,et al.  Large Area Single Crystal (0001) Oriented MoS2 Thin Films , 2013, 1302.3177.

[38]  K. Mak,et al.  Observation of intense second harmonic generation from MoS 2 atomic crystals , 2013, 1304.4289.

[39]  Theodore H. Geballe,et al.  Low-Frequency Conductivity Due to Hopping Processes in Silicon , 1961 .

[40]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[41]  Proceedings of the Royal Society (London) , 1906, Science.

[42]  H. Rockstad Hopping conduction and optical properties of amorphous chalcogenide films , 1970 .

[43]  R. Zeis,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004 .

[44]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[45]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[46]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[47]  Doreen Pfeifer,et al.  Quantum Processes In Semiconductors , 2016 .

[48]  Daniel R. Grischkowsky,et al.  Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal‐semiconductor interface , 1991 .

[49]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[50]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[51]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[52]  G. Scuseria,et al.  The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory , 2011 .

[53]  P. Landsberg,et al.  Recombination in semiconductors , 2003, Nature.

[54]  Andrew G. Glen,et al.  APPL , 2001 .

[55]  J. Coleman,et al.  Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. , 2013, ACS nano.

[56]  Kawamura,et al.  Phonon-scattering-limited electron mobilities in AlxGa1-xAs/GaAs heterojunctions. , 1992, Physical review. B, Condensed matter.

[57]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[58]  D. Basov,et al.  Infrared Studies of the Onset of Conductivity in Ultrathin Pb Films , 1999, cond-mat/9905036.

[59]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[60]  Takhee Lee,et al.  Gate-bias stress-dependent photoconductive characteristics of multi-layer MoS2 field-effect transistors , 2014, Nanotechnology.

[61]  Jan Vanhellemont,et al.  Carrier lifetime studies in Ge using microwave and infrared light techniques , 2006 .

[62]  Jiwoong Park,et al.  Ultrafast relaxation dynamics of hot optical phonons in graphene , 2009, 0909.4912.

[63]  V. Sundström,et al.  Intrinsic complications in the analysis of optical-pump, terahertz probe experiments , 2005 .