Clinical and Cytogenetic Features of Pediatric dic ( 9 ; 20 ) ( p 13 . 2 ; q 11 . 2 )-Positive B-Cell Precursor Acute Lymphoblastic Leukemias : A Nordic Series of 24 Cases and Review of the Literature

Erik Forestier,* Fredrika Gauffin,Mette K. Andersen,Kirsi Autio,Georg Borgström, Irina Golovleva, Britt Gustafsson, Sverre Heim,Kristina Heinonen,Mats Heyman, Randi Hovland, Johann H. Johannsson, Gitte Kerndrup, Richard Rosenquist, Jacqueline Schoumans, Birgitta Swolin, Bertil Johansson, and AnnNordgren* on behalf of the Nordic Society of Pediatric Hematology andOncology (NOPHO), the Swedish Cytogenetic Leukemia Study Group (SCLSG), and the NOPHOLeukemia Cytogenetic Study Group (NLCSG) Departmentof Clinical Sciences,Pediatrics,Universityof Ume ,Ume ,Sweden Departmentof Molecular Medicine and Surgery,Karolinska Institutet,Stockholm,Sweden Departmentof Clinical Science,Intervention and Technology,Pediatrics,Karolinska Institutet,Stockholm,Sweden Departmentof Clinical Genetics,Rigshospitalet,Copenhagen,Denmark Laboratoryof Molecular Pathology,Departmentof Pathology,HUSLAB,Helsinki,Finland Departmentof Medical Biosciences,Medical and Clinical Genetics,Universityof Ume ,Ume ,Sweden Universityof Oslo,Oslo,Norway Departmentof Medical Genetics,Rikshospitalet-Radiumhospitalet Medical Center,Oslo,Norway Chromosome and DNALaboratory,Kuopio University Hospital,Kuopio,Finland DepartmentofWoman and Child Health,Karolinska Institutet,Stockholm,Sweden Departmentof Medical Genetics and Molecular Medicine,Haukeland University Hospital,Helse-Bergen HF,Norway Departmentof Clinical Genetics and Cytogenetics,University Hospital,Reykjavik,Iceland Departmentof Pathology,Odense University Hospital,Odense,Denmark Departmentof Genetics and Pathology,Uppsala University,Uppsala,Sweden Departmentof Clinical Chemistry and Transfusion Medicine,Sahlgrenska University Hospital,G ̨teborg,Sweden Departmentof Clinical Genetics,Lund University Hospital,Lund,Sweden

[1]  B. Johansson,et al.  Outcome of ETV6/RUNX1‐positive childhood acute lymphoblastic leukaemia in the NOPHO‐ALL‐1992 protocol: frequent late relapses but good overall survival , 2008, British journal of haematology.

[2]  F. Ross,et al.  Genome complexity in acute lymphoblastic leukemia is revealed by array-based comparative genomic hybridization , 2007, Oncogene.

[3]  B. Johansson,et al.  The impact of translocations and gene fusions on cancer causation , 2007, Nature Reviews Cancer.

[4]  Jianmin Yang,et al.  Clinical and molecular cytogenetic characteristics of dic(9;20) in adult acute lymphoblastic leukemia: a case report of three patients , 2007, Annals of Hematology.

[5]  Å. Borg,et al.  Characterisation of dic(9;20)(p11–13;q11) in childhood B‐cell precursor acute lymphoblastic leukaemia by tiling resolution array‐based comparative genomic hybridisation reveals clustered breakpoints at 9p13.2 and 20q11.2 , 2006, British journal of haematology.

[6]  Patrik Edén,et al.  Molecular signatures in childhood acute leukemia and their correlations to expression patterns in normal hematopoietic subpopulations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. D. Boer,et al.  CDKN2 deletions have no prognostic value in childhood precursor-B acute lymphoblastic leukaemia , 2005, Leukemia.

[8]  A. Nordgren,et al.  Children and adults with acute lymphoblastic leukaemia have similar gene expression profiles , 2005, European journal of haematology.

[9]  Anthony V Moorman,et al.  Comparative expressed sequence hybridization studies of high‐hyperdiploid childhood acute lymphoblastic leukemia , 2004, Genes, chromosomes & cancer.

[10]  Ana-Teresa Maia,et al.  Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood , 2004, Genes, chromosomes & cancer.

[11]  C. Bloomfield,et al.  Additional cytogenetic abnormalities in adults with Philadelphia chromosome‐positive acute lymphoblastic leukaemia: a study of the Cancer and Leukaemia Group B , 2004, British journal of haematology.

[12]  B. Johansson,et al.  Clinical and biological importance of cytogenetic abnormalities in childhood and adult acute lymphoblastic leukemia , 2004, Annals of medicine.

[13]  S. Shurtleff,et al.  Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia , 2003, Cancer.

[14]  Ana-Teresa Maia,et al.  Prenatal origin of hyperdiploid acute lymphoblastic leukemia in identical twins , 2003, Leukemia.

[15]  L. Dušek,et al.  Complex karyotypes in childhood acute lymphoblastic leukemia: cytogenetic and molecular cytogenetic study of 21 cases. , 2003, Cancer genetics and cytogenetics.

[16]  O. Haas,et al.  Nondisjunction of chromosomes leading to hyperdiploid childhood B-cell precursor acute lymphoblastic leukemia is an early event during leukemogenesis. , 2002, Blood.

[17]  M. Greaves,et al.  Chromosome translocations and covert leukemic clones are generated during normal fetal development , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Y. Ravindranath,et al.  High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. , 2002, Blood.

[19]  O. Haas,et al.  Felix Mitelman: Database of chromosome aberrations in cancer , 2002, Human Genetics.

[20]  J. Downing,et al.  Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. , 2002, Cancer cell.

[21]  T. T. Lau,et al.  TEL/AML1 rearrangement and the prognostic significance in childhood acute lymphoblastic leukemia in Hong Kong , 2001, American journal of hematology.

[22]  G. Gustafsson,et al.  Improving outcome through two decades in childhood ALL in the Nordic countries: the impact of high-dose methotrexate in the reduction of CNS irradiation , 2000, Leukemia.

[23]  N. Heerema,et al.  Abnormalities of chromosome bands 13q12 to 13q14 in childhood acute lymphoblastic leukemia. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[24]  M. Höglund,et al.  Cytogenetic and FISH studies of a single center consecutive series of 152 childhood acute lymphoblastic leukemias , 2000, European journal of haematology.

[25]  T. Sawada,et al.  Detection of clonotypic IGH and TCR rearrangements in the neonatal blood spots of infants and children with B-cell precursor acute lymphoblastic leukemia. , 2000, Blood.

[26]  O. Eden,et al.  Monosomy 20 as a pointer to dicentric (9;20) in acute lymphoblastic leukemia , 2000, Leukemia.

[27]  M. Greaves,et al.  Prenatal origin of acute lymphoblastic leukaemia in children , 1999, The Lancet.

[28]  M. Greaves,et al.  Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. , 1999, Blood.

[29]  M. Greaves,et al.  Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  H. Adams,et al.  TEL-AML1 Fusion Transcript in Relapsed Childhood Acute Lymphoblastic Leukemia , 1998 .

[31]  N. Heerema,et al.  Dicentric (9;20)(p11;q11) identified by fluorescence in situ hybridization in four pediatric acute lymphoblastic leukemia patients. , 1996, Cancer genetics and cytogenetics.

[32]  M. Taniwaki,et al.  Detection and quantification of TEL/AML1 fusion transcripts by polymerase chain reaction in childhood acute lymphoblastic leukemia. , 1996, Leukemia.

[33]  B. Johansson,et al.  Primary vs. secondary neoplasia‐associated chromosomal abnormalities—balanced rearrangements vs. genomic imbalances? , 1996, Genes, chromosomes & cancer.

[34]  A. Hagemeijer,et al.  A non-random chromosome abnormality found in precursor-B lineage acute lymphoblastic leukaemia: dic(9;20)(p1?3;q11). , 1995, Leukemia.

[35]  S. Schnittger,et al.  dic(9; 20): A new recurrent chromosome abnormality in adult acute lymphoblastic leukemia , 1995, Genes, chromosomes & cancer.

[36]  S. Heim Is cancer cytogenetics reducible to the molecular genetics of cancer cells? , 1992, Genes, chromosomes & cancer.

[37]  J. Stockman The Incidence Peaks of the Childhood Acute Leukemias Reflect Specific Cytogenetic Aberrations , 2008 .