A sparse fast Fourier algorithm for real non-negative vectors
暂无分享,去创建一个
[1] Jacques Morgenstern,et al. Note on a Lower Bound on the Linear Complexity of the Fast Fourier Transform , 1973, JACM.
[2] Piotr Indyk,et al. Simple and practical algorithm for sparse Fourier transform , 2012, SODA.
[3] Yang Wang,et al. Adaptive Sub-Linear Time Fourier Algorithms , 2013, Adv. Data Sci. Adapt. Anal..
[4] G. Plonka,et al. Prony methods for recovery of structured functions , 2014 .
[5] Piotr Indyk,et al. Nearly optimal sparse fourier transform , 2012, STOC '12.
[6] Adi Akavia,et al. Deterministic Sparse Fourier Approximation Via Approximating Arithmetic Progressions , 2014, IEEE Transactions on Information Theory.
[7] Stefan Kunis,et al. A sparse Prony FFT , 2013 .
[8] Gerlind Plonka-Hoch,et al. A deterministic sparse FFT algorithm for vectors with small support , 2015, Numerical Algorithms.
[9] J R Fienup,et al. Phase retrieval algorithms: a comparison. , 1982, Applied optics.
[10] Mark A. Iwen,et al. Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..
[11] Toni Volkmer,et al. Efficient Spectral Estimation by MUSIC and ESPRIT with Application to Sparse FFT , 2016, Front. Appl. Math. Stat..
[12] Piotr Indyk,et al. Recent Developments in the Sparse Fourier Transform: A compressed Fourier transform for big data , 2014, IEEE Signal Processing Magazine.
[13] Kannan Ramchandran,et al. Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity , 2013, 2013 IEEE International Symposium on Information Theory.
[14] M. A. Iwen,et al. Improved Approximation Guarantees for Sublinear-Time Fourier Algorithms , 2010, ArXiv.