A sparse fast Fourier algorithm for real non-negative vectors

In this paper we propose a new fast Fourier transform to recover a real non-negative signal xR+N from its discrete Fourier transform x=FNxCN. If the signal x appears to have a short support, i.e., vanishes outside a support interval of length m

[1]  Jacques Morgenstern,et al.  Note on a Lower Bound on the Linear Complexity of the Fast Fourier Transform , 1973, JACM.

[2]  Piotr Indyk,et al.  Simple and practical algorithm for sparse Fourier transform , 2012, SODA.

[3]  Yang Wang,et al.  Adaptive Sub-Linear Time Fourier Algorithms , 2013, Adv. Data Sci. Adapt. Anal..

[4]  G. Plonka,et al.  Prony methods for recovery of structured functions , 2014 .

[5]  Piotr Indyk,et al.  Nearly optimal sparse fourier transform , 2012, STOC '12.

[6]  Adi Akavia,et al.  Deterministic Sparse Fourier Approximation Via Approximating Arithmetic Progressions , 2014, IEEE Transactions on Information Theory.

[7]  Stefan Kunis,et al.  A sparse Prony FFT , 2013 .

[8]  Gerlind Plonka-Hoch,et al.  A deterministic sparse FFT algorithm for vectors with small support , 2015, Numerical Algorithms.

[9]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[10]  Mark A. Iwen,et al.  Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..

[11]  Toni Volkmer,et al.  Efficient Spectral Estimation by MUSIC and ESPRIT with Application to Sparse FFT , 2016, Front. Appl. Math. Stat..

[12]  Piotr Indyk,et al.  Recent Developments in the Sparse Fourier Transform: A compressed Fourier transform for big data , 2014, IEEE Signal Processing Magazine.

[13]  Kannan Ramchandran,et al.  Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity , 2013, 2013 IEEE International Symposium on Information Theory.

[14]  M. A. Iwen,et al.  Improved Approximation Guarantees for Sublinear-Time Fourier Algorithms , 2010, ArXiv.