Application of variational iteration method and homotopy–perturbation method for nonlinear heat diffusion and heat transfer equations

Abstract Perturbation methods depend on a small parameter which is difficult to be found for real-life nonlinear problems. To overcome this shortcoming, two new but powerful analytical methods are introduced to solve nonlinear heat transfer problems in this Letter; one is He's variational iteration method (VIM) and the other is the homotopy–perturbation method (HPM). Nonlinear convective–radiative cooling equations are used as examples to illustrate the simple solution procedures. These methods are useful and practical for solving the nonlinear heat diffusion equation, which is associated with variable thermal conductivity condition. Comparison of the results obtained by both methods with exact solutions reveals that both methods are tremendously effective.

[1]  A. Aziz,et al.  Perturbation Solution for Convecting Fin With Variable Thermal Conductivity , 1975 .

[2]  Ji-Huan He Variational iteration method – a kind of non-linear analytical technique: some examples , 1999 .

[3]  Ji-Huan He,et al.  Addendum:. New Interpretation of Homotopy Perturbation Method , 2006 .

[4]  Ji-Huan He SOME ASYMPTOTIC METHODS FOR STRONGLY NONLINEAR EQUATIONS , 2006 .

[5]  Ji-Huan He,et al.  Homotopy perturbation method: a new nonlinear analytical technique , 2003, Appl. Math. Comput..

[6]  L. Segel,et al.  Introduction to Singular Perturbations. By R. E. O'MALLEY, JR. Academic Press, 1974. $ 16.50. , 1975, Journal of Fluid Mechanics.

[7]  Ji-Huan He HOMOTOPY PERTURBATION METHOD FOR SOLVING BOUNDARY VALUE PROBLEMS , 2006 .

[8]  T. Hayat,et al.  Homotopy Perturbation Method and Axisymmetric Flow over a Stretching Sheet , 2006 .

[9]  Davood Domiri Ganji,et al.  Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations , 2007 .

[10]  Davood Domiri Ganji,et al.  Application of homotopy perturbation method in nonlinear heat conduction and convection equations , 2007 .

[11]  Ji-Huan He,et al.  Variational iteration method for autonomous ordinary differential systems , 2000, Appl. Math. Comput..

[12]  Ji-Huan He Homotopy Perturbation Method for Bifurcation of Nonlinear Problems , 2005 .

[13]  Ji-Huan He Approximate analytical solution for seepage flow with fractional derivatives in porous media , 1998 .

[14]  D. Ganji The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer , 2006 .

[15]  Ji-Huan He,et al.  The homotopy perturbation method for nonlinear oscillators with discontinuities , 2004, Appl. Math. Comput..

[16]  Cha’o-Kuang Chen,et al.  Application of Taylor transformation to optimize rectangular fins with variable thermal parameters , 1998 .

[17]  C. Arslanturk A decomposition method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity , 2005 .

[18]  Ji-Huan He,et al.  Comparison of homotopy perturbation method and homotopy analysis method , 2004, Appl. Math. Comput..

[19]  P. Razelos,et al.  The Optimum Dimensions of Circular Fins with Variable Thermal Parameters , 1979 .

[20]  Ji-Huan He Approximate solution of nonlinear differential equations with convolution product nonlinearities , 1998 .

[21]  Ji-Huan He,et al.  Construction of solitary solution and compacton-like solution by variational iteration method , 2006 .

[22]  M. Bouaziz,et al.  Étude des transferts de chaleur non linéaires dans les ailettes longitudinales , 2001 .

[23]  Davood Domiri Ganji,et al.  ASSESSMENT OF HOMOTOPY-PERTURBATION AND PERTURBATION METHODS IN HEAT RADIATION EQUATIONS , 2006 .

[24]  Ji-Huan He Application of homotopy perturbation method to nonlinear wave equations , 2005 .

[25]  H. Weitzner,et al.  Perturbation Methods in Applied Mathematics , 1969 .

[26]  R. Bellman Perturbation techniques in mathematics, physics, and engineering , 1972 .

[27]  Ji-Huan He Limit cycle and bifurcation of nonlinear problems , 2005 .