Uncovering the underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson’s disease

[1]  T. Aziz,et al.  Principles of deep brain stimulation , 2019, Oxford Textbook of Neurological Surgery.

[2]  Gustavo Deco,et al.  Cortical rich club regions can organize state-dependent functional network formation by engaging in oscillatory behavior , 2017, NeuroImage.

[3]  Ke Zeng,et al.  Modulations on cortical oscillations by subthalamic deep brain stimulation in patients with Parkinson disease: A MEG study , 2017, Neuroscience Letters.

[4]  Gustavo Deco,et al.  The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core , 2016, bioRxiv.

[5]  M. Kringelbach,et al.  The Rediscovery of Slowness: Exploring the Timing of Cognition , 2015, Trends in Cognitive Sciences.

[6]  G. Tononi,et al.  Rethinking segregation and integration: contributions of whole-brain modelling , 2015, Nature Reviews Neuroscience.

[7]  Morten L. Kringelbach,et al.  Evidence from a rare case study for Hebbian-like changes in structural connectivity induced by long-term deep brain stimulation , 2015, Front. Behav. Neurosci..

[8]  Gustavo Deco,et al.  Computational Modeling of Resting-State Activity Demonstrates Markers of Normalcy in Children with Prenatal or Perinatal Stroke , 2015, The Journal of Neuroscience.

[9]  L. Mancini,et al.  The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices , 2015, PloS one.

[10]  Nicole C. Swann,et al.  Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease , 2015, Nature Neuroscience.

[11]  Maurizio Corbetta,et al.  Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology and Heterogeneity , 2015, PLoS Comput. Biol..

[12]  M. Kringelbach,et al.  Novel fingerprinting method characterises the necessary and sufficient structural connectivity from deep brain stimulation electrodes for a successful outcome , 2015 .

[13]  M. Kringelbach,et al.  Great Expectations: Using Whole-Brain Computational Connectomics for Understanding Neuropsychiatric Disorders , 2014, Neuron.

[14]  J. Suckling,et al.  The default mode network is disrupted in parkinson's disease with visual hallucinations , 2014, Human brain mapping.

[15]  O. Sporns Contributions and challenges for network models in cognitive neuroscience , 2014, Nature Neuroscience.

[16]  Antonio P Strafella,et al.  Uncovering the role of the insula in non-motor symptoms of Parkinson's disease. , 2014, Brain : a journal of neurology.

[17]  G. Stebbins,et al.  Visuoperceptive region atrophy independent of cognitive status in patients with Parkinson's disease with hallucinations. , 2014, Brain : a journal of neurology.

[18]  Karl J. Friston,et al.  Resting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on ‘effective’ connectivity , 2014, Brain : a journal of neurology.

[19]  Morten L. Kringelbach,et al.  Neural Plasticity in Human Brain Connectivity: The Effects of Long Term Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson’s Disease , 2014, PloS one.

[20]  Arjan Hillebrand,et al.  Disrupted brain network topology in Parkinson's disease: a longitudinal magnetoencephalography study. , 2014, Brain : a journal of neurology.

[21]  R. Griggs,et al.  Writeclick: Editor's choice , 2014 .

[22]  Gustavo Deco,et al.  Bottom up modeling of the connectome: Linking structure and function in the resting brain and their changes in aging , 2013, NeuroImage.

[23]  Ji Hyun Ko,et al.  Parkinson's disease cognitive network correlates with caudate dopamine , 2013, NeuroImage.

[24]  P. Brown,et al.  Adaptive Deep Brain Stimulation In Advanced Parkinson Disease , 2013, Annals of neurology.

[25]  Yong He,et al.  BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics , 2013, PloS one.

[26]  Yoshikazu Ugawa,et al.  Supplementary motor area stimulation for Parkinson disease , 2013, Neurology.

[27]  M. Vink,et al.  Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder , 2013, Nature Neuroscience.

[28]  A. Lozano,et al.  Probing and Regulating Dysfunctional Circuits Using Deep Brain Stimulation , 2013, Neuron.

[29]  J. Vitek,et al.  History, applications, and mechanisms of deep brain stimulation. , 2013, JAMA neurology.

[30]  L. Bour,et al.  Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease (NSTAPS study): a randomised controlled trial , 2013, The Lancet Neurology.

[31]  Karl J. Friston,et al.  Therapeutic Subthalamic Nucleus Deep Brain Stimulation Reverses Cortico-Thalamic Coupling during Voluntary Movements in Parkinson's Disease , 2012, PloS one.

[32]  Mikko Sams,et al.  Functional Magnetic Resonance Imaging Phase Synchronization as a Measure of Dynamic Functional Connectivity , 2012, Brain Connect..

[33]  Morten L. Kringelbach,et al.  MEG Can Map Short and Long-Term Changes in Brain Activity following Deep Brain Stimulation for Chronic Pain , 2012, PloS one.

[34]  G. Deco,et al.  Ongoing Cortical Activity at Rest: Criticality, Multistability, and Ghost Attractors , 2012, The Journal of Neuroscience.

[35]  J. Henderson,et al.  High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson's disease , 2012, Front. Hum. Neurosci..

[36]  M. Hariz Hand bradykinesia improved by DBS in the dorsal putamen? , 2012, Movement disorders : official journal of the Movement Disorder Society.

[37]  Morten L. Kringelbach,et al.  Neuroethical principles of deep-brain stimulation. , 2011, World neurosurgery.

[38]  He Huang,et al.  High‐frequency deep brain stimulation of the putamen improves bradykinesia in Parkinson's disease , 2011, Movement disorders : official journal of the Movement Disorder Society.

[39]  Laura Mancini,et al.  Functional imaging of subthalamic nucleus deep brain stimulation in Parkinson's disease , 2011, Movement disorders : official journal of the Movement Disorder Society.

[40]  Gustavo Deco,et al.  Role of local network oscillations in resting-state functional connectivity , 2011, NeuroImage.

[41]  Morten L. Kringelbach,et al.  Balancing the Brain: Resting State Networks and Deep Brain Stimulation , 2011, Front. Integr. Neurosci..

[42]  F. Horak,et al.  Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. , 2011, Archives of neurology.

[43]  Karl J. Friston,et al.  Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson's disease. , 2011, Brain : a journal of neurology.

[44]  W. Bialek,et al.  Are Biological Systems Poised at Criticality? , 2010, 1012.2242.

[45]  Chen,et al.  A functional magnetic resonance imaging study , 2011 .

[46]  Thomas Foltynie,et al.  Improving Targeting in Image-Guided Frame-Based Deep Brain Stimulation , 2010, Neurosurgery.

[47]  Tatiana Witjas,et al.  Dopaminergic modulation of the default mode network in Parkinson's disease , 2010, European Neuropsychopharmacology.

[48]  P. Brown,et al.  Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[49]  Morten L Kringelbach,et al.  Sing the mind electric – principles of deep brain stimulation , 2010, The European journal of neuroscience.

[50]  Grant D. Huang,et al.  Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease. , 2010, The New England journal of medicine.

[51]  Thomas Foltynie,et al.  Surgical management of Parkinson’s disease , 2010, Expert review of neurotherapeutics.

[52]  J. Geddes,et al.  What is a randomised controlled trial? , 2009, Epidemiologia e Psichiatria Sociale.

[53]  Oury Monchi,et al.  Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study. , 2009, Archives of neurology.

[54]  D. Bowers,et al.  Cognition and mood in Parkinson's disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: The COMPARE Trial , 2009, Annals of neurology.

[55]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[56]  Nicola J. Ray,et al.  Local field potential beta activity in the subthalamic nucleus of patients with Parkinson's disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation , 2008, Experimental Neurology.

[57]  Andrea A. Kühn,et al.  High-Frequency Stimulation of the Subthalamic Nucleus Suppresses Oscillatory β Activity in Patients with Parkinson's Disease in Parallel with Improvement in Motor Performance , 2008, The Journal of Neuroscience.

[58]  Junchao Tong,et al.  Preferential loss of serotonin markers in caudate versus putamen in Parkinson's disease. , 2007, Brain : a journal of neurology.

[59]  John S. Thornton,et al.  Functional MRI with active, fully implanted, deep brain stimulation systems: Safety and experimental confounds , 2007, NeuroImage.

[60]  M. Kringelbach,et al.  Translational principles of deep brain stimulation , 2007, Nature Reviews Neuroscience.

[61]  H. Bergman,et al.  Pathological synchronization in Parkinson's disease: networks, models and treatments , 2007, Trends in Neurosciences.

[62]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[63]  Morten L Kringelbach,et al.  Deep brain stimulation for chronic pain investigated with magnetoencephalography , 2007, Neuroreport.

[64]  J. Dostrovsky,et al.  Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson's disease. , 2006, Journal of neurophysiology.

[65]  G. Deuschl,et al.  A randomized trial of deep-brain stimulation for Parkinson's disease. , 2006, The New England journal of medicine.

[66]  P. Brown,et al.  Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease , 2006, The European journal of neuroscience.

[67]  Mandy Miller Koop,et al.  Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson's disease , 2006, Experimental Neurology.

[68]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[69]  Peter Brown,et al.  Basal ganglia local field potential activity: Character and functional significance in the human , 2005, Clinical Neurophysiology.

[70]  Y. Agid,et al.  Subthalamic DBS replaces levodopa in Parkinson’s disease: Two-year follow-up , 2003, Neurology.

[71]  J. Saint-Cyr,et al.  Subthalamic DBS replaces levodopa in Parkinson's disease. , 2002, Neurology.

[72]  賢二 鈴木 慢性副鼻腔炎に対するrandomized controlled study , 2002 .

[73]  J. Dostrovsky,et al.  The Globus Pallidus, Deep Brain Stimulation, and Parkinson's Disease , 2002, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[74]  J. Vitek Mechanisms of deep brain stimulation: Excitation or inhibition , 2002, Movement disorders : official journal of the Movement Disorder Society.

[75]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[76]  Yoshiyuki Sakaki,et al.  Circadian Rhythms in Isolated Brain Regions , 2002, The Journal of Neuroscience.

[77]  W. Hacke,et al.  Deep brain stimulation for the treatment of Parkinson's disease: subthalamic nucleus versus globus pallidus internus , 2001, Journal of neurology, neurosurgery, and psychiatry.

[78]  J R Moeller,et al.  Regional metabolic correlates of surgical outcomes following unilateral pallidotomy for parkinson's disease , 1996, Annals of neurology.

[79]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[80]  Scott T. Grafton,et al.  Pallidotomy increases activity of motor association cortex in parkinson's disease: A positron emission tomographic study , 1995, Annals of neurology.

[81]  D. Spencer,et al.  Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson's disease. , 1992, The New England journal of medicine.

[82]  T. Aziz,et al.  Lesion of the subthalamic nucleus for the alleviation of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐induced parkinsonism in the primate , 1991, Movement disorders : official journal of the Movement Disorder Society.

[83]  H. Bergman,et al.  Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. , 1990, Science.

[84]  J. Langston,et al.  Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. , 1983, Science.