Framework for Fast Experimental Testing of Autonomous Navigation Algorithms

This work has been supported by InterregV Sudoe and FEDER programs of European Commission through the COMMANDIA project SOE2/P1/F0638, and by the Spanish Government through the FPU grant FPU15/04446 and the research project RTI2018-094279-B-I00.

[1]  G. Lakemeyer,et al.  The RoboCup Logistics League as a Benchmark for Planning in Robotics , 2015 .

[2]  Nils J. Nilsson,et al.  A Mobile Automaton: An Application of Artificial Intelligence Techniques , 1969, IJCAI.

[3]  Erik Maehle,et al.  A unified visual graph-based approach to navigation for wheeled mobile robots , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Stane Krasovec The Future of Agriculture , 1929, Nature.

[5]  Dongpu Cao,et al.  Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles , 2017 .

[6]  Fernando Torres Medina,et al.  Deeper in BLUE , 2020, J. Intell. Robotic Syst..

[7]  Torsten Bertram,et al.  Kinodynamic trajectory optimization and control for car-like robots , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[8]  Somia Brahimi,et al.  Car-like mobile robot navigation in unknown urban areas , 2016, 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).

[9]  Lee Gomes,et al.  When will Google's self-driving car really be ready? It depends on where you live and what you mean by "ready" [News] , 2016 .

[10]  Andrzej Stateczny,et al.  Universal Autonomous Control and Management System for Multipurpose Unmanned Surface Vessel , 2019, Polish Maritime Research.

[11]  Luca Iocchi,et al.  A unified benchmark framework for autonomous Mobile robots and Vehicles Motion Algorithms (MoVeMA benchmarks) , 2008 .

[12]  Anthony Stentz,et al.  Mobile Robot Navigation: The CMU System , 1987, IEEE Expert.

[13]  Anthony King,et al.  Technology: The Future of Agriculture , 2017, Nature.

[14]  Andre Schneider de Oliveira,et al.  ROS Navigation: Concepts and Tutorial , 2016 .

[15]  William Whittaker,et al.  Autonomous driving in urban environments: Boss and the Urban Challenge , 2008, J. Field Robotics.

[16]  David C. Conner,et al.  Flexible Navigation: Finite state machine-based integrated navigation and control for ROS enabled robots , 2017, SoutheastCon 2017.

[17]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[18]  Moises Rivas-Lopez,et al.  Obtención de Trayectorias Empleando el Marco Strapdown INS/KF: Propuesta Metodológica. , 2018, Revista Iberoamericana de Automática e Informática industrial.

[19]  Hadas Kress-Gazit,et al.  Collaborative Autonomy between High‐level Behaviors and Human Operators for Remote Manipulation Tasks using Different Humanoid Robots , 2017, J. Field Robotics.

[20]  Rachid Alami,et al.  An Architecture for Autonomy , 1998, Int. J. Robotics Res..

[21]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Sergi Hernández Juan,et al.  Autonomous navigation framework for a car-like robot , 2015 .

[23]  Vicente Milanés Montero,et al.  Introduction to the Special Issue on “New Trends towards Automatic Vehicle Control and Perception Systems” , 2013, Sensors.

[24]  Raquel Frizera Vassallo,et al.  A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application , 2017, Sensors.

[25]  Andrew McGordon,et al.  Developing and testing of control software framework for autonomous ground vehicle , 2017, 2017 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC).

[26]  Fernando Torres Medina,et al.  Speed Estimation for Control of an Unmanned Ground Vehicle using Extremely Low Resolution Sensors , 2018, ICINCO.

[27]  Sebastian Thrun,et al.  Junior: The Stanford entry in the Urban Challenge , 2008, J. Field Robotics.

[28]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[29]  Pascual Campoy Cervera,et al.  A Reliable Open-Source System Architecture for the Fast Designing and Prototyping of Autonomous Multi-UAV Systems: Simulation and Experimentation , 2015, Journal of Intelligent & Robotic Systems.

[30]  Andreas Zell,et al.  GeRoNa: Generic Robot Navigation , 2019, J. Intell. Robotic Syst..

[31]  Sebastian Thrun,et al.  Stanley: The robot that won the DARPA Grand Challenge , 2006, J. Field Robotics.

[32]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[33]  Gonzalo Ferrer,et al.  Robot social-aware navigation framework to accompany people walking side-by-side , 2016, Autonomous Robots.

[34]  Senén Barro,et al.  Particle filter robot localisation through robust fusion of laser, WiFi, compass, and a network of external cameras , 2016, Inf. Fusion.

[35]  Sanjiv Singh,et al.  The 2005 DARPA Grand Challenge: The Great Robot Race , 2007 .

[36]  Y. Goto,et al.  CMU Sidewalk Navigation System: A Blackboard-Based Outdoor Navigation System Using Sensor Fusion with Colored-Range Images , 1986, FJCC.

[37]  Andrew Howard,et al.  Design and use paradigms for Gazebo, an open-source multi-robot simulator , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[38]  Sanjiv Singh,et al.  The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, George Air Force Base, Victorville, California, USA , 2009, The DARPA Urban Challenge.

[39]  Thomas Moore,et al.  A Generalized Extended Kalman Filter Implementation for the Robot Operating System , 2014, IAS.

[40]  Rick Dove,et al.  Agile Systems Engineering Process Features Collective Culture, Consciousness, and Conscience at SSC Pacific Unmanned Systems Group , 2016 .

[41]  N. S. Hoang,et al.  A Low-Cost , 1997 .

[42]  Pascual Campoy Cervera,et al.  A Review of Deep Learning Methods and Applications for Unmanned Aerial Vehicles , 2017, J. Sensors.