Reducing Indium Consumption in Silicon Hetero Junction Solar Cells With TCO Stack Systems of ITO and AZO

This article reports on the reduction of indium consumption in bifacial rear emitter n-type silicon heterojunction (SHJ) solar cells by substituting the transparent conducting oxide (TCO) indium tin oxide (ITO) with aluminum doped zinc oxide (AZO). AZO, ITO, and stacks of both TCOs are sputtered at room temperature and 170 °C on both sides of SHJ solar cells and glass samples. The short circuit current density (<italic>J<sub>SC</sub></italic>) of AZO SHJ cells is lower than that of ITO-based cells, possibly due to a smaller optical band gap <italic>E</italic><sub>G</sub> = 3.35 eV of AZO in contrast to <italic>E<sub>G</sub></italic> = 3.71 eV for ITO, which could lead to stronger parasitic blue absorption for AZO cells. Series resistance <italic>R</italic><sub>S</sub> of pure AZO SHJ solar cells is high mainly due to high contact resistance <italic>R</italic><sub>C</sub> between silver (Ag) metallization and AZO and high <italic>R</italic><sub>C</sub> between amorphous silicon (a-Si) and the transparent AZO with low electron density <italic>n</italic><sub>e</sub>. Using ITO<sub>a-Si</sub>-AZO-ITO<sub>Ag</sub> stacks, which saves about 50% of ITO, enables <italic>R<sub>S</sub></italic> values comparable to the ITO reference group, resulting in the same efficiency as the pure ITO cells. By replacing ITO<sub>a-Si</sub> with a high <italic>n<sub>e</sub></italic> AZO<sub>a-Si</sub> the lowest <italic>R<sub>S</sub></italic> is achieved. This AZO<sub>a-Si</sub>-AZO-ITO<sub>Ag</sub> structure saves about 70% ITO. Damp heat tests on cell and glass samples reveal a clear advantage of TCO stacks over AZO single layers.

[1]  Lei Zhao,et al.  Application of Indium Tin Oxide/Aluminum-Doped Zinc Oxide Transparent Conductive Oxide Stack Films in Silicon Heterojunction Solar Cells , 2021, ACS Applied Energy Materials.

[2]  K. Yu,et al.  Effects of oxygen flow ratio and thermal annealing on defect evolution of aluminum doped zinc oxide thin films by reactive DC magnetron sputtering , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  S. Glunz,et al.  Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses , 2021, Nature Energy.

[4]  M. Hermle,et al.  Influence of TCO and a-Si:H Doping on SHJ Contact Resistivity , 2021, IEEE Journal of Photovoltaics.

[5]  Asmaa M. Aly,et al.  Highly efficient SiO2 trapezoidal grating-based thin-film solar cell , 2021 .

[6]  Liping Zhang,et al.  Low-resistivity p-type a-Si:H/AZO hole contact in high-efficiency silicon heterojunction solar cells , 2020 .

[7]  C. Ballif,et al.  Lateral transport in silicon solar cells , 2020 .

[8]  B. Stannowski,et al.  Influence of Silicon Layers on the Growth of ITO and AZO in Silicon Heterojunction Solar Cells , 2020, IEEE Journal of Photovoltaics.

[9]  J. Lin,et al.  Effects of nitrogen/oxygen on the electrical and optical properties and microstructure of triple layer AZO/Ag/AZO thin films , 2020 .

[10]  Zhengshan J. Yu,et al.  Contact Resistivity of the p-Type Amorphous Silicon Hole Contact in Silicon Heterojunction Solar Cells , 2020, IEEE Journal of Photovoltaics.

[11]  G. Tamizhmani,et al.  Damp Heat Induced Degradation of Silicon Heterojunction Solar Cells With Cu-Plated Contacts , 2020, IEEE Journal of Photovoltaics.

[12]  U. Rau,et al.  Influence of Room Temperature Sputtered Al-Doped Zinc Oxide on Passivation Quality in Silicon Heterojunction Solar Cells , 2019, IEEE Journal of Photovoltaics.

[13]  C. Ballif,et al.  Aluminium-Doped Zinc Oxide Rear Reflectors for High-Efficiency Silicon Heterojunction Solar Cells , 2019, IEEE Journal of Photovoltaics.

[14]  Daniel Meza,et al.  Aluminum-Doped Zinc Oxide as Front Electrode for Rear Emitter Silicon Heterojunction Solar Cells with High Efficiency , 2019, Applied Sciences.

[15]  J. Andreu,et al.  Modulation of argon pressure as an option to control transmittance and resistivity of ZnO:Al films deposited by DC magnetron sputtering: on the dark yellow films at 10-7 Torr base pressures , 2018, Revista Mexicana de Física.

[16]  Shurong Wang,et al.  Comparative study of AZO and ITO thin film sputtered at different temperatures and their application in Cu2ZnSnS4 solar cells , 2018, Journal of Materials Science: Materials in Electronics.

[17]  Kenji Yamamoto,et al.  High-efficiency heterojunction crystalline Si solar cells , 2018, Japanese Journal of Applied Physics.

[18]  M. Thirumoorthi,et al.  Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique , 2016 .

[19]  C. Ballif,et al.  Environmental stability of high-mobility indium-oxide based transparent electrodes , 2015 .

[20]  Florian Ruske,et al.  Damp heat stable doped zinc oxide films , 2014 .

[21]  Jae Ik Kim,et al.  Quantitative analyses of damp-heat-induced degradation in transparent conducting oxides , 2014 .

[22]  J. Ha,et al.  Effects of Controlling the AZO Thin Film's Optical Band Gap on AZO/MEH-PPV Devices with Buffer Layer , 2012 .

[23]  K. Ellmer,et al.  Reactive magnetron sputtering of transparent conductive oxide thin films: Role of energetic particle (ion) bombardment , 2012 .

[24]  Yusuf Selamet,et al.  High quality ITO thin films grown by dc and RF sputtering without oxygen , 2010 .

[25]  Bernd Rech,et al.  Damp heat stability and annealing behavior of aluminum doped zinc oxide films prepared by magnetron sputtering , 2006 .

[26]  Hiroyuki Fujiwara,et al.  Effects of carrier concentration on the dielectric function of ZnO:Ga and In 2 O 3 : Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption , 2005 .

[27]  G. Ceder,et al.  First-principles study of native point defects in ZnO , 2000 .

[28]  D. Look,et al.  Residual Native Shallow Donor in ZnO , 1999 .

[29]  G. Mahan Intrinsic defects in ZnO varistors , 1983 .

[30]  A. Heinrich,et al.  Electrical properties and non‐stoichiometry in ZnO single crystals , 1981 .

[31]  T. Moss The Interpretation of the Properties of Indium Antimonide , 1954 .

[32]  E. Burstein Anomalous Optical Absorption Limit in InSb , 1954 .

[33]  M. Bivour,et al.  Microscopic Origins of Contact Deterioration During Annealing of Silicon Heterojunction Solar Cell Contacts , 2023, IEEE Journal of Photovoltaics.

[34]  H. Bolink,et al.  Wafer-Scale Pulsed Laser Deposition of ITO for Solar Cells: Reduced Damage vs Interfacial Resistance , 2022, Materials Advances.

[35]  U. Rau,et al.  > 85% Indium Reduction for High-Efficiency Silicon Heterojunction Solar Cells with Aluminum-Doped Zinc Oxide Contacts , 2022, SSRN Electronic Journal.

[36]  Yuchao Zhang,et al.  Design considerations for multi-terawatt scale manufacturing of existing and future photovoltaic technologies: challenges and opportunities related to silver, indium and bismuth consumption , 2021, Energy & Environmental Science.

[37]  B. Stannowski,et al.  ITO-Free Silicon Heterojunction Solar Cells With ZnO:Al/SiO2 Front Electrodes Reaching a Conversion Efficiency of 23% , 2019, IEEE Journal of Photovoltaics.

[38]  P. Bhargav,et al.  Sputtered AZO Thin Films for TCO and Back Reflector Applications in Improving the Efficiency of Thin Film a-Si:H Solar Cells , 2015, Silicon.

[39]  Heiko Steinkemper,et al.  Rear Emitter Silicon Heterojunction Solar Cells: Fewer Restrictions on the Optoelectrical Properties of Front Side TCOs , 2014 .