Micromagnetic Simulation of Magnetization Reversal Process Using Magnetic Force Microscope Image

The Nd9.5Fe61.5Co10Nb20.5Ti0.5B15.5C0.5 nanocomposite magnets have been prepared by the copper-mold casting technique. The magnetic properties were calculated by the micromagnetic simulation using the magnetic force microscopy image. The influence of different saturation magnetization of amorphous grain boundary phase on the magnetization reversal process was investigated. The simulation results indicate that the coercivity increases with the reducing saturation magnetization of amorphous phase when the grain size varied from 300 to 1000 nm. The magnetization reversal process demonstrates that the magnetic moments of NdFeB phase show the prior inversion at the grain boundaries. Furthermore, the comparison between the anisotropic and isotropic model implies the importance of preparing anisotropic magnets.

[1]  M. Futamoto,et al.  Micromagnetic Studies of Ultrahigh Resolution Magnetic Force Microscope Tip Coated by Soft Magnetic Materials , 2015, IEEE Transactions on Magnetics.

[2]  Satoshi Hirosawa,et al.  Micromagnetic Simulations of Magnetization Reversal in Misaligned Multigrain Magnets With Various Grain Boundary Properties Using Large-Scale Parallel Computing , 2014, IEEE Transactions on Magnetics.

[3]  H. Sepehri-Amin,et al.  Micromagnetic simulations on the grain size dependence of coercivity in anisotropic Nd–Fe–B sintered magnets , 2014 .

[4]  S. Tao,et al.  Rapidly solidified Nd7Fe67B22Mo3Zr1 nanocomposite permanent magnets , 2014 .

[5]  M. O. A. Ellis,et al.  Atomistic spin model simulations of magnetic nanomaterials , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  Thomas Schrefl,et al.  Effect of Nd content on the microstructure and coercivity of hot-deformed Nd–Fe–B permanent magnets , 2013 .

[7]  M. Vázquez,et al.  Structural Dependence of Magnetic Properties in Co-Based Nanowires: Experiments and Micromagnetic Simulations , 2013, IEEE Transactions on Magnetics.

[8]  Y. Yamaguchi,et al.  Micromagnetic Study on Influence of the Magnetic Field Direction on the Domain Structure in Stacked Media , 2013, IEEE Transactions on Magnetics.

[9]  S. Okatov,et al.  Micro Magnetic Exchange Interaction Tensor and Magnetization Reversal of ${\rm L}1_{0}$ FePt Based Alloy Thin Film Nano-Structures , 2012, IEEE Transactions on Magnetics.

[10]  A. Samardak,et al.  3-D Architectural Approach for Manipulation of the Micromagnetic Configuration in Nanodisks , 2012, IEEE Transactions on Magnetics.

[11]  S. Tao,et al.  Synthesis, structural and magnetic properties of the nanocomposite Fe63B23Nd7Y3Nb3Cr1 magnets , 2012 .

[12]  S. Gupta,et al.  Micromagnetic Exchange Interaction Tensor and Magnetization Reversal of hcp Co-Based Alloy Thin Film Nano-Structures , 2012, IEEE Transactions on Magnetics.

[13]  T. Matsuo,et al.  Demagnetizing Field in Micromagnetic Simulation Under Periodic Boundary Conditions , 2010, IEEE Transactions on Magnetics.

[14]  H. Chang,et al.  Magnetic property enhancement of directly quenched Nd–Fe–B bulk magnets with Ti substitution , 2010 .

[15]  Xierong Zeng,et al.  Effect of melt treatment on the microstructure and magnetic properties of Nd2Fe14B/α-Fe nanocomposites , 2010 .

[16]  J. Eckert,et al.  Preparation of bulk Nd2Fe14B/Fe3B nanocomposite magnets with high rare earth content , 2008 .

[17]  A. Zhukov,et al.  Round table discussion: Present and future applications of nanocrystalline magnetic materials , 2005 .

[18]  T. Schrefl,et al.  Micromagnetic modelling—the current state of the art , 2000 .

[19]  M J Donahue,et al.  OOMMF User's Guide, Version 1.0 , 1999 .

[20]  E. Kneller,et al.  The exchange-spring magnet: a new material principle for permanent magnets , 1991 .