Amplified spontaneous emission from waveguides based on hybrid quasi-2D perovskites of Dion–Jacobson and Ruddlesden–Popper phases

Morphology optimized quasi-2D perovskite films are fabricated through a strategy of hybrid Dion–Jacobson and Ruddlesden–Popper phases, resulting in good amplified spontaneous emission performance with a low threshold and high gain coefficient.

[1]  Jinsong Huang,et al.  Self-powered perovskite photon-counting detectors , 2023, Nature.

[2]  Ye Liu,et al.  High-yield growth of FACsPbBr_3 single crystals with low defect density from mixed solvents for gamma-ray spectroscopy , 2023, Nature Photonics.

[3]  P. Yadav,et al.  Ammonium Thiocyanate-Passivated Quasi-Two-Dimensional Dion Jacobson Perovskite Solar Cells for Improved Efficiency and Stability , 2022, ACS Applied Energy Materials.

[4]  W. Tress,et al.  Over 24% efficient MA-free CsxFA1−xPbX3 perovskite solar cells , 2022, Joule.

[5]  W. Tress,et al.  Perovskite light-emitting diodes , 2022, Nature Electronics.

[6]  E. Sargent,et al.  Dual‐Phase Regulation for High‐Efficiency Perovskite Light‐Emitting Diodes , 2022, Advanced Functional Materials.

[7]  J. Myoung,et al.  Composition-Dependent Optoelectronic Properties of Mixed 2D/3D Metal Halide Perovskite Films for Light-Emitting Diodes , 2022, ACS Applied Energy Materials.

[8]  K. Catchpole,et al.  Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent , 2022, Nature.

[9]  A. Vedda,et al.  Understanding Thermal and A‐Thermal Trapping Processes in Lead Halide Perovskites Towards Effective Radiation Detection Schemes , 2021, Advanced Functional Materials.

[10]  Lixin Xiao,et al.  High Optical Gain of Solution‐Processed Mixed‐Cation CsPbBr3 Thin Films towards Enhanced Amplified Spontaneous Emission , 2021, Advanced Functional Materials.

[11]  Ruxin Li,et al.  Subwavelength-Polarized Quasi-Two-Dimensional Perovskite Single-Mode Nanolaser. , 2021, ACS nano.

[12]  H. Tam,et al.  Frequency-upconverted Stimulated Emission by Up to Six-photon Excitation from Highly Extended Spiro-fused Ladder-type Oligo(p-phenylene)s. , 2021, Angewandte Chemie.

[13]  A. Petrozza,et al.  Optical Gain of Lead Halide Perovskites Measured via the Variable Stripe Length Method: What We Can Learn and How to Avoid Pitfalls , 2021, Advanced Optical Materials.

[14]  Jizhong Song,et al.  Flat, Luminescent, and Defect-Less Perovskite Films on PVK for Light-Emitting Diodes with Enhanced Efficiency and Stability , 2020 .

[15]  S. Seok,et al.  Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells , 2020, Science.

[16]  Atula S. D. Sandanayaka,et al.  Stable room-temperature continuous-wave lasing in quasi-2D perovskite films , 2020, Nature.

[17]  U. Rothlisberger,et al.  Formamidinium‐Based Dion‐Jacobson Layered Hybrid Perovskites: Structural Complexity and Optoelectronic Properties , 2020, Advanced Functional Materials.

[18]  Wei Huang,et al.  Ultrashort laser pulse doubling by metal-halide perovskite multiple quantum wells , 2020, Nature Communications.

[19]  G. Xing,et al.  Tailoring the Surface Morphology and Phase Distribution for Efficient Perovskite Electroluminescence. , 2020, The journal of physical chemistry letters.

[20]  P. Blom,et al.  Co‐Interlayer Engineering toward Efficient Green Quasi‐Two‐Dimensional Perovskite Light‐Emitting Diodes , 2020, Advanced Functional Materials.

[21]  G. Mannino,et al.  Temperature-Dependent Optical Band Gap in CsPbBr3, MAPbBr3, and FAPbBr3 Single Crystals , 2020, The journal of physical chemistry letters.

[22]  H. Ade,et al.  Efficient Energy Funneling in Quasi‐2D Perovskites: From Light Emission to Lasing , 2020, Advanced materials.

[23]  Maria Luisa De Giorgi,et al.  Amplified Spontaneous Emission and Lasing in Lead Halide Perovskites: State of the Art and Perspectives , 2019, Applied Sciences.

[24]  Lu Zhang,et al.  Two dimensional metal halide perovskites: Promising candidates for light-emitting diodes , 2019, Journal of Energy Chemistry.

[25]  Liyun Zhao,et al.  Lasing from Mechanically Exfoliated 2D Homologous Ruddlesden–Popper Perovskite Engineered by Inorganic Layer Thickness , 2019, Advanced materials.

[26]  A. Pan,et al.  Multicolor Semiconductor Lasers , 2019, Advanced Optical Materials.

[27]  Wei Huang,et al.  Recent Progress in Metal Halide Perovskite Micro‐ and Nanolasers , 2019, Advanced Optical Materials.

[28]  Yi Jiang,et al.  Low‐Threshold Organic Semiconductor Lasers with the Aid of Phosphorescent Ir(III) Complexes as Triplet Sensitizers , 2019, Advanced Functional Materials.

[29]  T. Matsushima,et al.  Distributed Feedback Lasers and Light-Emitting Diodes Using 1-Naphthylmethylamnonium Low-Dimensional Perovskite , 2019, ACS Photonics.

[30]  Haizheng Zhong,et al.  Efficient Light-Emitting Diodes Based on in Situ Fabricated FAPbBr3 Nanocrystals: The Enhancing Role of the Ligand-Assisted Reprecipitation Process. , 2018, ACS nano.

[31]  A. Pan,et al.  Ultrahigh Quality Upconverted Single‐Mode Lasing in Cesium Lead Bromide Spherical Microcavity , 2018, Advanced Optical Materials.

[32]  Jisoo Shin,et al.  Temperature-Dependent Photoluminescence of CH3NH3PbBr3 Perovskite Quantum Dots and Bulk Counterparts. , 2018, The journal of physical chemistry letters.

[33]  Kaiyang Wang,et al.  Recent Advances in Perovskite Micro‐ and Nanolasers , 2018, Advanced Optical Materials.

[34]  S. Muduli,et al.  Enhanced Exciton and Photon Confinement in Ruddlesden–Popper Perovskite Microplatelets for Highly Stable Low‐Threshold Polarized Lasing , 2018, Advanced materials.

[35]  Peng Liu,et al.  A Two-Dimensional Ruddlesden-Popper Perovskite Nanowire Laser Array based on Ultrafast Light-Harvesting Quantum Wells , 2018, Angewandte Chemie.

[36]  Wenping Hu,et al.  Amplified Spontaneous Emission Based on 2D Ruddlesden–Popper Perovskites , 2018 .

[37]  P. Liu,et al.  2D Ruddlesden–Popper Perovskites Microring Laser Array , 2018, Advanced materials.

[38]  Hui Yan,et al.  The Surface Coating of Commercial LiFePO4 by Utilizing ZIF-8 for High Electrochemical Performance Lithium Ion Battery , 2017, Nano-micro letters.

[39]  L. Herz Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits , 2017 .

[40]  Wei Huang,et al.  Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence , 2017, Nature Communications.

[41]  Jeunghee Park,et al.  Light-Matter Interactions in Cesium Lead Halide Perovskite Nanowire Lasers. , 2016, The journal of physical chemistry letters.

[42]  S. Mhaisalkar,et al.  Perovskite Materials for Light‐Emitting Diodes and Lasers , 2016, Advanced materials.

[43]  Edward H. Sargent,et al.  Perovskite photonic sources , 2016, Nature Photonics.

[44]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[45]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[46]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[47]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[48]  R. Rai Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films , 2013 .

[49]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[50]  L. Cerdán Simultaneous retrieval of optical gains, losses, and threshold in active waveguides , 2020 .

[51]  Yani Chen,et al.  2D Ruddlesden–Popper Perovskites for Optoelectronics , 2018, Advanced materials.