Real-time stereo vision system using adaptive weight cost aggregation approach

Many vision applications require high-accuracy dense disparity maps in real time. Due to the complexity of the matching process, most real-time stereo applications rely on local algorithms in the disparity computation. These local algorithms generally suffer from matching ambiguities as it is difficult to find appropriate support for each pixel. Recent research shows that algorithms using adaptive cost aggregation approach greatly improve the quality of disparity map. Unfortunately, although these improvements are excellent, they are obtained at the expense of high computational. This article presents a hardware implementation for speeding up these methods. With hardware friendly approximation, we demonstrate the feasibility of implementing this expensive computational task on hardware to achieve real-time performance. The entire stereo vision system, includes rectification, stereo matching, and disparity refinement, is realized using a single field programmable gate array. The highly parallelized pipeline structure makes system be capable to achieve 51 frames per second for 640 × 480 stereo images. Finally, the success of accuracy improvement is demonstrated on the Middlebury dataset, as well as tests on real scene.

[1]  Olga Veksler,et al.  Fast variable window for stereo correspondence using integral images , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[2]  J.M. Perez,et al.  High memory throughput FPGA architecture for high-definition Belief-Propagation stereo matching , 2009, 2009 3rd International Conference on Signals, Circuits and Systems (SCS).

[3]  Chandra Kambhamettu,et al.  Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation , 2009, 2009 Workshop on Applications of Computer Vision (WACV).

[4]  W. James MacLean,et al.  Video-rate stereo depth measurement on programmable hardware , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[5]  Aaron F. Bobick,et al.  Large Occlusion Stereo , 1999, International Journal of Computer Vision.

[6]  Jean-Guy Fontaine,et al.  High parallel disparity map computing on FPGA , 2010, Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications.

[7]  Emanuele Trucco,et al.  Symmetric Stereo with Multiple Windowing , 2000, Int. J. Pattern Recognit. Artif. Intell..

[8]  Lucas J. van Vliet,et al.  Separable bilateral filtering for fast video preprocessing , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[9]  Kristian Ambrosch,et al.  Corrigendum to "Accurate hardware-based stereo vision" [Computer Vision and Image Understanding 114 (2010) 1303-1316 , 2011, Comput. Vis. Image Underst..

[10]  Masatoshi Okutomi,et al.  Precise Sub-Pixel Estimation on Area-Based Matching , 2001, ICCV.

[11]  Ruigang Yang,et al.  Improved Real-Time Stereo on Commodity Graphics Hardware , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[12]  Peter Pirsch,et al.  Real-time stereo vision system using semi-global matching disparity estimation: Architecture and FPGA-implementation , 2010, 2010 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation.

[13]  Takeo Kanade,et al.  A stereo machine for video-rate dense depth mapping and its new applications , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  W. James MacLean,et al.  Reconfigurable hardware implementation of a phase-correlation stereoalgorithm , 2006, Machine Vision and Applications.

[15]  Kristian Ambrosch,et al.  Accurate hardware-based stereo vision , 2010, Comput. Vis. Image Underst..

[16]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[17]  John Woodfill,et al.  Real-time stereo vision on the PARTS reconfigurable computer , 1997, Proceedings. The 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines Cat. No.97TB100186).

[18]  Stefan K. Gehrig,et al.  A Real-Time Low-Power Stereo Vision Engine Using Semi-Global Matching , 2009, ICVS.

[19]  Luigi di Stefano,et al.  A fast area-based stereo matching algorithm , 2004, Image Vis. Comput..

[20]  John Iselin Woodfill,et al.  Tyzx DeepSea High Speed Stereo Vision System , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[21]  Olga Veksler,et al.  Stereo correspondence by dynamic programming on a tree , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[22]  Alberto Prieto,et al.  Real-Time System for High-Image Resolution Disparity Estimation , 2007, IEEE Transactions on Image Processing.

[23]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[24]  Ruigang Yang,et al.  A versatile stereo implementation on commodity graphics hardware , 2005, Real Time Imaging.

[25]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[26]  Stefania Perri,et al.  SAD-Based Stereo Matching Circuit for FPGAs , 2006, 2006 13th IEEE International Conference on Electronics, Circuits and Systems.

[27]  Takeo Kanade,et al.  A locally adaptive window for signal matching , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[28]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Miao Liao,et al.  Real-time Global Stereo Matching Using Hierarchical Belief Propagation , 2006, BMVC.

[30]  Minglun Gong,et al.  Near real-time reliable stereo matching using programmable graphics hardware , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[31]  Ruigang Yang,et al.  Multi-resolution real-time stereo on commodity graphics hardware , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[32]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Kristian Ambrosch,et al.  An Optimized Software-Based Implementation of a Census-Based Stereo Matching Algorithm , 2008, ISVC.

[34]  Andreas Steininger,et al.  Flexible Hardware-Based Stereo Matching , 2008, EURASIP J. Embed. Syst..

[35]  Federico Tombari,et al.  Classification and evaluation of cost aggregation methods for stereo correspondence , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Steven W. Zucker,et al.  Surface Geometric Constraints for Stereo in Belief Propagation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[37]  Tsutomu Maruyama,et al.  A Real-Time Stereo Vision System with FPGA , 2003, FPL.

[38]  Ruigang Yang,et al.  A Performance Study on Different Cost Aggregation Approaches Used in Real-Time Stereo Matching , 2007, International Journal of Computer Vision.

[39]  Kurt Konolige,et al.  Small Vision Systems: Hardware and Implementation , 1998 .

[40]  Emanuele Trucco,et al.  A compact algorithm for rectification of stereo pairs , 2000, Machine Vision and Applications.

[41]  Olga Veksler,et al.  A Variable Window Approach to Early Vision , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Apostolos Dollas,et al.  Methodology and Experimental Setup for the Determination of System-level Dynamic Reconfiguration Overhead , 2007 .

[43]  Reinhard Männer,et al.  Calculating Dense Disparity Maps from Color Stereo Images, an Efficient Implementation , 2004, International Journal of Computer Vision.

[44]  Marco Platzner,et al.  Field Programmable Logic and Application , 2004, Lecture Notes in Computer Science.

[45]  Andreas Klaus,et al.  Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[46]  Liang-Gee Chen,et al.  Hardware-Efficient Belief Propagation , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[47]  W. James MacLean,et al.  A Real-Time Large Disparity Range Stereo-System using FPGAs , 2006, Fourth IEEE International Conference on Computer Vision Systems (ICVS'06).

[48]  Jia Yunde,et al.  Stereo Vision System on Programmable Chip (SVSoC) for Small Robot Navigation , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Tian-Sheuan Chang,et al.  Algorithm and Architecture of Disparity Estimation With Mini-Census Adaptive Support Weight , 2010, IEEE Transactions on Circuits and Systems for Video Technology.

[51]  Jae Wook Jeon,et al.  FPGA Design and Implementation of a Real-Time Stereo Vision System , 2010, IEEE Transactions on Circuits and Systems for Video Technology.

[52]  Jonathan M. Garibaldi,et al.  Real-Time Correlation-Based Stereo Vision with Reduced Border Errors , 2002, International Journal of Computer Vision.

[53]  Chris Murphy,et al.  Low-Cost Stereo Vision on an FPGA , 2007, 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM 2007).

[54]  S. Nooshabadi,et al.  FPGA implementation of a median filter , 1997, TENCON '97 Brisbane - Australia. Proceedings of IEEE TENCON '97. IEEE Region 10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications (Cat. No.97CH36162).