Quantum positron acoustic waves

Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

[1]  M. Tribeche,et al.  Quantum ion-acoustic solitary waves: the effect of exchange correlation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  F. Haas Quantum Plasmas: An Hydrodynamic Approach , 2011 .

[3]  M. Tribeche Small-amplitude positron-acoustic double layers , 2010 .

[4]  M. Tribeche,et al.  Nonlinear positron acoustic solitary waves , 2009 .

[5]  M. Tribeche,et al.  Weakly nonlinear dust ion-acoustic shock waves in a dusty plasma with nonthermal electrons , 2009 .

[6]  T. H. Zerguini,et al.  Arbitrary amplitude quantum dust ion-acoustic solitary waves , 2008 .

[7]  P. Shukla,et al.  Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas. , 2007, Physical review letters.

[8]  G. Manfredi,et al.  Autoresonant control of the many-electron dynamics in nonparabolic quantum wells , 2007, 0710.1176.

[9]  S. Massar,et al.  Quantum information processing and communication , 2005 .

[10]  F. Haas,et al.  Modified Zakharov equations for plasmas with a quantum correction , 2004, physics/0410251.

[11]  A. Luque,et al.  Quantum corrected electron holes , 2003, physics/0311126.

[12]  F. Haas,et al.  Quantum ion-acoustic waves , 2003 .

[13]  F. Haas,et al.  Self-consistent fluid model for a quantum electron gas , 2001, cond-mat/0203394.

[14]  F. Haas,et al.  Nyquist method for Wigner-Poisson quantum plasmas. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Haas,et al.  Multistream model for quantum plasmas , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Manfredi,et al.  Theory and simulation of classical and quantum echoes. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Gardner,et al.  Smooth quantum potential for the hydrodynamic model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  M. Feix,et al.  Expansion of a quantum electron gas , 1993, Journal of Plasma Physics.

[19]  P. Bertrand,et al.  Numerical simulation of the quantum Liouville-Poisson system , 1991 .

[20]  F. Michel Theory of Neutron Star Magnetospheres , 1990 .

[21]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[22]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[23]  H. H. Kuehl,et al.  Modified Korteweg–de Vries solitary wave in a slowly varying medium , 1980 .

[24]  H. H. Kuehl,et al.  Korteweg-de Vries Soliton in a Slowly Varying Medium , 1978 .

[25]  Ronald C. Davidson,et al.  Methods in Nonlinear Plasma Theory , 1973 .