UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer.

[1]  T. Ono,et al.  Molecular nature of ultraviolet B light-induced deletions in the murine epidermis. , 2001, Cancer research.

[2]  T. Kunkel,et al.  Proofreading of DNA Polymerase η-dependent Replication Errors* , 2001, The Journal of Biological Chemistry.

[3]  G. Pfeifer,et al.  Similarities in sunlight-induced mutational spectra of CpG-methylated transgenes and the p53 gene in skin cancer point to an important role of 5-methylcytosine residues in solar UV mutagenesis. , 2001, Journal of molecular biology.

[4]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[5]  G. Emri,et al.  Low doses of UVB or UVA induce chromosomal aberrations in cultured human skin cells. , 2000, The Journal of investigative dermatology.

[6]  H. Puchta,et al.  Elevated UV-B radiation reduces genome stability in plants , 2000, Nature.

[7]  A. Sarasin,et al.  UV-specific mutations of the human patched gene in basal cell carcinomas from normal individuals and xeroderma pigmentosum patients. , 2000, Mutation research.

[8]  J. Herman,et al.  DNA hypermethylation in tumorigenesis: epigenetics joins genetics. , 2000, Trends in genetics : TIG.

[9]  D. Krause,et al.  Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Corona,et al.  UV mutation signature in tumor suppressor genes involved in skin carcinogenesis in xeroderma pigmentosum patients , 2000, Oncogene.

[11]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[12]  F. Gruijl Skin cancer and solar UV radiation , 1999 .

[13]  M. Scott,et al.  Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice , 1999, Nature Medicine.

[14]  Paul A. Khavari,et al.  Sonic Hedgehog Opposes Epithelial Cell Cycle Arrest , 1999, The Journal of cell biology.

[15]  A. R. I. Altaba Gli proteins and Hedgehog signaling: development and cancer. , 1999 .

[16]  Chikahide Masutani,et al.  The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η , 1999, Nature.

[17]  S. Queillé,et al.  High levels of patched gene mutations in basal-cell carcinomas from patients with xeroderma pigmentosum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  R. DePinho,et al.  The INK4A/ARF locus and its two gene products. , 1999, Current opinion in genetics & development.

[19]  David Hogg,et al.  Mutation of the CDKN2A 5' UTR creates an aberrant initiation codon and predisposes to melanoma , 1999, Nature Genetics.

[20]  Peter A. Jones,et al.  The Human ARF Cell Cycle Regulatory Gene Promoter Is a CpG Island Which Can Be Silenced by DNA Methylation and Down-Regulated by Wild-Type p53 , 1998, Molecular and Cellular Biology.

[21]  G. Peters,et al.  The p16INK4a/CDKN2A tumor suppressor and its relatives. , 1998, Biochimica et biophysica acta.

[22]  Karen H. Vousden,et al.  p14ARF links the tumour suppressors RB and p53 , 1998, Nature.

[23]  Kevin Ryan,et al.  The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2 , 1998, The EMBO journal.

[24]  M. Schartl,et al.  Localization of a CDKN2 gene in linkage group V of Xiphophorus fishes defines it as a candidate for the DIFF tumor suppressor , 1998, Genes, chromosomes & cancer.

[25]  D. Wong,et al.  p16INK4a expression is frequently decreased and associated with 9p21 loss of heterozygosity in sporadic melanoma , 1998, Journal of cutaneous pathology.

[26]  L. Wojnowski,et al.  Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome , 1998, Nature Medicine.

[27]  A. Tates,et al.  The Induction and Analysis of Micronuclei and Cell Killing by Ultraviolet‐B Radiation in Human Peripheral Blood Lymphocytes , 1998, Photochemistry and photobiology.

[28]  Yue Xiong,et al.  ARF Promotes MDM2 Degradation and Stabilizes p53: ARF-INK4a Locus Deletion Impairs Both the Rb and p53 Tumor Suppression Pathways , 1998, Cell.

[29]  R. Goodman,et al.  Protein kinase A directly regulates the activity and proteolysis of cubitus interruptus. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Q. Gu,et al.  Activating Smoothened mutations in sporadic basal-cell carcinoma , 1998, Nature.

[31]  N. Hayward,et al.  Low frequency of p16/CDKN2A methylation in sporadic melanoma: comparative approaches for methylation analysis of primary tumors. , 1997, Cancer research.

[32]  L. Chin,et al.  Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. , 1997, Genes & development.

[33]  N. Dahmane,et al.  Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours , 1997, Nature.

[34]  S. H. Kim,et al.  Genetic alterations of p16INK4a and p53 genes in sporadic dysplastic nevus. , 1997, Biochemical and biophysical research communications.

[35]  M. Scott,et al.  Altered neural cell fates and medulloblastoma in mouse patched mutants. , 1997, Science.

[36]  M. Scott,et al.  Basal cell carcinomas in mice overexpressing sonic hedgehog. , 1997, Science.

[37]  F. Gruijl,et al.  bcl-2 vs p53 protein expression and apoptotic rate in human nonmelanoma skin cancers. , 1997, Archives of dermatology.

[38]  N. Dumaz,et al.  The role of UV-B light in skin carcinogenesis through the analysis of p53 mutations in squamous cell carcinomas of hairless mice. , 1997, Carcinogenesis.

[39]  B. Epe,et al.  Wavelength dependence of oxidative DNA damage induced by UV and visible light. , 1997, Carcinogenesis.

[40]  Paul A. Khavari,et al.  Induction of basal cell carcinoma features in transgenic human skin expressing Sonic Hedgehog , 1997, Nature Medicine.

[41]  S. Lowe,et al.  Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a , 1997, Cell.

[42]  R. Tarone,et al.  Frequent clones of p53-mutated keratinocytes in normal human skin. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Bulyk,et al.  Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. , 1996, Cancer research.

[44]  Michael Dean,et al.  Is human patched the gatekeeper of common skin cancers? , 1996, Nature Genetics.

[45]  N. Hayward,et al.  Relevance of ultraviolet-induced N-ras oncogene point mutations in development of primary human cutaneous melanoma. , 1996, The American journal of pathology.

[46]  K. Isselbacher,et al.  Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[47]  F. Pontén,et al.  Two distinct p53 immunohistochemical patterns in human squamous‐cell skin cancer, precursors and normal epidermis , 1996, International journal of cancer.

[48]  J. Rees,et al.  Genetic change in actinic keratoses. , 1996, Oncogene.

[49]  Michael Dean,et al.  Mutations of the Human Homolog of Drosophila patched in the Nevoid Basal Cell Carcinoma Syndrome , 1996, Cell.

[50]  E. Healy,et al.  Allelotypes of primary cutaneous melanoma and benign melanocytic nevi. , 1996, Cancer research.

[51]  F. Gruijl,et al.  Early p53 alterations in mouse skin carcinogenesis by UVB radiation: immunohistochemical detection of mutant p53 protein in clusters of preneoplastic epidermal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[52]  F. Gruijl,et al.  Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA , 1995, Nature.

[53]  A. Bradley,et al.  High susceptibility to ultraviolet-induced carcinogenesis in mice lacking XPC , 1995, Nature.

[54]  P. Pollock,et al.  Evidence for u.v. induction of CDKN2 mutations in melanoma cell lines. , 1995, Oncogene.

[55]  A. de Vries,et al.  Frequent p53 alterations but low incidence of ras mutations in UV-B-induced skin tumors of hairless mice. , 1995, Carcinogenesis.

[56]  E. Drobetsky,et al.  A role for ultraviolet A in solar mutagenesis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[57]  D. English,et al.  Does intermittent sun exposure cause basal cell carcinoma? a case‐control study in Western Australia , 1995, International journal of cancer.

[58]  J. Rees,et al.  Basal cell carcinomas and squamous cell carcinomas of human skin show distinct patterns of chromosome loss. , 1994, Cancer research.

[59]  M A Weinstock,et al.  Nonmelanoma skin cancer in the United States: incidence. , 1994, Journal of the American Academy of Dermatology.

[60]  M. Skolnick,et al.  A cell cycle regulator potentially involved in genesis of many tumor types. , 1994, Science.

[61]  G. Hannon,et al.  A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 , 1993, Nature.

[62]  D. Beach,et al.  Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. , 1993, Genes & development.

[63]  W. Pierceall,et al.  High frequency of p53 mutations in ultraviolet radiation-induced murine skin tumors: evidence for strand bias and tumor heterogeneity. , 1993, Cancer research.

[64]  A. Ziegler,et al.  Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[65]  C. Campbell,et al.  Codon 12 Harvey‐ras mutations are rare events in non‐melanoma human skin cancer , 1993, The British journal of dermatology.

[66]  C. Sutter,et al.  Carcinogen-specific mutational pattern in the p53 gene in ultraviolet B radiation-induced squamous cell carcinomas of mouse skin. , 1992, Cancer research.

[67]  J. Simon,et al.  A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[68]  A. Grollman,et al.  Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG , 1991, Nature.

[69]  W. Pierceall,et al.  Ras gene mutation and amplification in human nonmelanoma skin cancers , 1991, Molecular carcinogenesis.

[70]  V. Bruskov,et al.  The formation of mispairs by 8‐oxyguanine as a pathway of mutations induced by irradiation and oxygen radicals , 1990, Journal of molecular recognition : JMR.

[71]  R. Setlow,et al.  Animal model for ultraviolet radiation-induced melanoma: platyfish-swordtail hybrid. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[72]  M. Schartl,et al.  Novel putative receptor tyrosine kinase encoded by the melanoma-inducing Tu locus in Xiphophorus , 1989, Nature.

[73]  L. J. Veer,et al.  N-ras mutations in human cutaneous melanoma from sun-exposed body sites , 1989, Molecular and cellular biology.

[74]  K. Kraemer,et al.  Xeroderma Pigmentosum: Cutaneous, Ocular, and Neurologic Abnormalities in 830 Published Cases , 1987 .

[75]  G. Greenoak,et al.  Characterization and histogenesis of tumors in the hairless mouse produced by low-dosage incremental ultraviolet radiation. , 1984, The Journal of investigative dermatology.

[76]  B. Armstrong,et al.  Cutaneous malignant melanoma and indicators of total accumulated exposure to the sun: an analysis separating histogenetic types. , 1984, Journal of the National Cancer Institute.

[77]  S. Rabkin,et al.  The role of DNA polymerase in base substitution mutagenesis on non-instructional templates. , 1982, Biochimie.

[78]  W. Haseltine,et al.  UV-induced mutation hotspots occur at DNA damage hotspots , 1982, Nature.

[79]  J. Aubin,et al.  Mutants of chinese hamster ovary (cho) cells with altered colcemid-binding affinity , 1979, Cell.